aboutsummaryrefslogtreecommitdiff
path: root/src/core/memory.cpp
blob: eb4ab42d44de1c5e8db3fda76e72df13768d28fc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <array>
#include <cstring>
#include <boost/serialization/array.hpp>
#include <boost/serialization/binary_object.hpp>
#include "audio_core/dsp_interface.h"
#include "common/archives.h"
#include "common/assert.h"
#include "common/atomic_ops.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/global.h"
#include "core/hle/kernel/process.h"
#include "core/hle/service/plgldr/plgldr.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/renderer_base.h"

SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl<Memory::Region::FCRAM>)
SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl<Memory::Region::VRAM>)
SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl<Memory::Region::DSP>)
SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl<Memory::Region::N3DS>)

namespace Memory {

void PageTable::Clear() {
    pointers.raw.fill(nullptr);
    pointers.refs.fill(MemoryRef());
    attributes.fill(PageType::Unmapped);
}

class RasterizerCacheMarker {
public:
    void Mark(VAddr addr, bool cached) {
        bool* p = At(addr);
        if (p)
            *p = cached;
    }

    bool IsCached(VAddr addr) {
        bool* p = At(addr);
        if (p)
            return *p;
        return false;
    }

private:
    bool* At(VAddr addr) {
        if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
            return &vram[(addr - VRAM_VADDR) / CITRA_PAGE_SIZE];
        }
        if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
            return &linear_heap[(addr - LINEAR_HEAP_VADDR) / CITRA_PAGE_SIZE];
        }
        if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
            return &new_linear_heap[(addr - NEW_LINEAR_HEAP_VADDR) / CITRA_PAGE_SIZE];
        }
        if (addr >= PLUGIN_3GX_FB_VADDR && addr < PLUGIN_3GX_FB_VADDR_END) {
            return &plugin_fb[(addr - PLUGIN_3GX_FB_VADDR) / CITRA_PAGE_SIZE];
        }
        return nullptr;
    }

    std::array<bool, VRAM_SIZE / CITRA_PAGE_SIZE> vram{};
    std::array<bool, LINEAR_HEAP_SIZE / CITRA_PAGE_SIZE> linear_heap{};
    std::array<bool, NEW_LINEAR_HEAP_SIZE / CITRA_PAGE_SIZE> new_linear_heap{};
    std::array<bool, PLUGIN_3GX_FB_SIZE / CITRA_PAGE_SIZE> plugin_fb{};

    static_assert(sizeof(bool) == 1);
    friend class boost::serialization::access;
    template <typename Archive>
    void serialize(Archive& ar, const unsigned int file_version) {
        ar& vram;
        ar& linear_heap;
        ar& new_linear_heap;
        ar& plugin_fb;
    }
};

class MemorySystem::Impl {
public:
    // Visual Studio would try to allocate these on compile time
    // if they are std::array which would exceed the memory limit.
    std::unique_ptr<u8[]> fcram = std::make_unique<u8[]>(Memory::FCRAM_N3DS_SIZE);
    std::unique_ptr<u8[]> vram = std::make_unique<u8[]>(Memory::VRAM_SIZE);
    std::unique_ptr<u8[]> n3ds_extra_ram = std::make_unique<u8[]>(Memory::N3DS_EXTRA_RAM_SIZE);

    Core::System& system;
    std::shared_ptr<PageTable> current_page_table = nullptr;
    RasterizerCacheMarker cache_marker;
    std::vector<std::shared_ptr<PageTable>> page_table_list;

    AudioCore::DspInterface* dsp = nullptr;

    std::shared_ptr<BackingMem> fcram_mem;
    std::shared_ptr<BackingMem> vram_mem;
    std::shared_ptr<BackingMem> n3ds_extra_ram_mem;
    std::shared_ptr<BackingMem> dsp_mem;

    Impl(Core::System& system_);

    const u8* GetPtr(Region r) const {
        switch (r) {
        case Region::VRAM:
            return vram.get();
        case Region::DSP:
            return dsp->GetDspMemory().data();
        case Region::FCRAM:
            return fcram.get();
        case Region::N3DS:
            return n3ds_extra_ram.get();
        default:
            UNREACHABLE();
        }
    }

    u8* GetPtr(Region r) {
        switch (r) {
        case Region::VRAM:
            return vram.get();
        case Region::DSP:
            return dsp->GetDspMemory().data();
        case Region::FCRAM:
            return fcram.get();
        case Region::N3DS:
            return n3ds_extra_ram.get();
        default:
            UNREACHABLE();
        }
    }

    u32 GetSize(Region r) const {
        switch (r) {
        case Region::VRAM:
            return VRAM_SIZE;
        case Region::DSP:
            return DSP_RAM_SIZE;
        case Region::FCRAM:
            return FCRAM_N3DS_SIZE;
        case Region::N3DS:
            return N3DS_EXTRA_RAM_SIZE;
        default:
            UNREACHABLE();
        }
    }

    u32 GetPC() const noexcept {
        return system.GetRunningCore().GetPC();
    }

    template <bool UNSAFE>
    void ReadBlockImpl(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
                       const std::size_t size) {
        auto& page_table = *process.vm_manager.page_table;

        std::size_t remaining_size = size;
        std::size_t page_index = src_addr >> CITRA_PAGE_BITS;
        std::size_t page_offset = src_addr & CITRA_PAGE_MASK;

        while (remaining_size > 0) {
            const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size);
            const VAddr current_vaddr =
                static_cast<VAddr>((page_index << CITRA_PAGE_BITS) + page_offset);

            switch (page_table.attributes[page_index]) {
            case PageType::Unmapped: {
                LOG_ERROR(
                    HW_Memory,
                    "unmapped ReadBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC "
                    "0x{:08X}",
                    current_vaddr, src_addr, size, GetPC());
                std::memset(dest_buffer, 0, copy_amount);
                break;
            }
            case PageType::Memory: {
                DEBUG_ASSERT(page_table.pointers[page_index]);

                const u8* src_ptr = page_table.pointers[page_index] + page_offset;
                std::memcpy(dest_buffer, src_ptr, copy_amount);
                break;
            }
            case PageType::RasterizerCachedMemory: {
                if constexpr (!UNSAFE) {
                    RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
                                                 FlushMode::Flush);
                }
                std::memcpy(dest_buffer, GetPointerForRasterizerCache(current_vaddr), copy_amount);
                break;
            }
            default:
                UNREACHABLE();
            }

            page_index++;
            page_offset = 0;
            dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
            remaining_size -= copy_amount;
        }
    }

    template <bool UNSAFE>
    void WriteBlockImpl(const Kernel::Process& process, const VAddr dest_addr,
                        const void* src_buffer, const std::size_t size) {
        auto& page_table = *process.vm_manager.page_table;
        std::size_t remaining_size = size;
        std::size_t page_index = dest_addr >> CITRA_PAGE_BITS;
        std::size_t page_offset = dest_addr & CITRA_PAGE_MASK;

        while (remaining_size > 0) {
            const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size);
            const VAddr current_vaddr =
                static_cast<VAddr>((page_index << CITRA_PAGE_BITS) + page_offset);

            switch (page_table.attributes[page_index]) {
            case PageType::Unmapped: {
                LOG_ERROR(
                    HW_Memory,
                    "unmapped WriteBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC "
                    "0x{:08X}",
                    current_vaddr, dest_addr, size, GetPC());
                break;
            }
            case PageType::Memory: {
                DEBUG_ASSERT(page_table.pointers[page_index]);

                u8* dest_ptr = page_table.pointers[page_index] + page_offset;
                std::memcpy(dest_ptr, src_buffer, copy_amount);
                break;
            }
            case PageType::RasterizerCachedMemory: {
                if constexpr (!UNSAFE) {
                    RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
                                                 FlushMode::Invalidate);
                }
                std::memcpy(GetPointerForRasterizerCache(current_vaddr), src_buffer, copy_amount);
                break;
            }
            default:
                UNREACHABLE();
            }

            page_index++;
            page_offset = 0;
            src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
            remaining_size -= copy_amount;
        }
    }

    MemoryRef GetPointerForRasterizerCache(VAddr addr) const {
        if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
            return {fcram_mem, addr - LINEAR_HEAP_VADDR};
        }
        if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
            return {fcram_mem, addr - NEW_LINEAR_HEAP_VADDR};
        }
        if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
            return {vram_mem, addr - VRAM_VADDR};
        }
        if (addr >= PLUGIN_3GX_FB_VADDR && addr < PLUGIN_3GX_FB_VADDR_END) {
            auto plg_ldr = Service::PLGLDR::GetService(system);
            if (plg_ldr) {
                return {fcram_mem,
                        addr - PLUGIN_3GX_FB_VADDR + plg_ldr->GetPluginFBAddr() - FCRAM_PADDR};
            }
        }

        UNREACHABLE();
        return MemoryRef{};
    }

    void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
        const VAddr end = start + size;

        auto CheckRegion = [&](VAddr region_start, VAddr region_end, PAddr paddr_region_start) {
            if (start >= region_end || end <= region_start) {
                // No overlap with region
                return;
            }

            auto& renderer = system.GPU().Renderer();
            VAddr overlap_start = std::max(start, region_start);
            VAddr overlap_end = std::min(end, region_end);
            PAddr physical_start = paddr_region_start + (overlap_start - region_start);
            u32 overlap_size = overlap_end - overlap_start;

            auto* rasterizer = renderer.Rasterizer();
            switch (mode) {
            case FlushMode::Flush:
                rasterizer->FlushRegion(physical_start, overlap_size);
                break;
            case FlushMode::Invalidate:
                rasterizer->InvalidateRegion(physical_start, overlap_size);
                break;
            case FlushMode::FlushAndInvalidate:
                rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size);
                break;
            }
        };

        CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END, FCRAM_PADDR);
        CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END, FCRAM_PADDR);
        CheckRegion(VRAM_VADDR, VRAM_VADDR_END, VRAM_PADDR);
        auto plg_ldr = Service::PLGLDR::GetService(system);
        if (plg_ldr && plg_ldr->GetPluginFBAddr()) {
            CheckRegion(PLUGIN_3GX_FB_VADDR, PLUGIN_3GX_FB_VADDR_END, plg_ldr->GetPluginFBAddr());
        }
    }

private:
    friend class boost::serialization::access;
    template <class Archive>
    void serialize(Archive& ar, const unsigned int file_version) {
        bool save_n3ds_ram = Settings::values.is_new_3ds.GetValue();
        ar& save_n3ds_ram;
        ar& boost::serialization::make_binary_object(vram.get(), Memory::VRAM_SIZE);
        ar& boost::serialization::make_binary_object(
            fcram.get(), save_n3ds_ram ? Memory::FCRAM_N3DS_SIZE : Memory::FCRAM_SIZE);
        ar& boost::serialization::make_binary_object(
            n3ds_extra_ram.get(), save_n3ds_ram ? Memory::N3DS_EXTRA_RAM_SIZE : 0);
        ar& cache_marker;
        ar& page_table_list;
        // dsp is set from Core::System at startup
        ar& current_page_table;
        ar& fcram_mem;
        ar& vram_mem;
        ar& n3ds_extra_ram_mem;
        ar& dsp_mem;
    }
};

// We use this rather than BufferMem because we don't want new objects to be allocated when
// deserializing. This avoids unnecessary memory thrashing.
template <Region R>
class MemorySystem::BackingMemImpl : public BackingMem {
public:
    BackingMemImpl() : impl(*Core::Global<Core::System>().Memory().impl) {}
    explicit BackingMemImpl(MemorySystem::Impl& impl_) : impl(impl_) {}
    u8* GetPtr() override {
        return impl.GetPtr(R);
    }
    const u8* GetPtr() const override {
        return impl.GetPtr(R);
    }
    std::size_t GetSize() const override {
        return impl.GetSize(R);
    }

private:
    MemorySystem::Impl& impl;

    template <class Archive>
    void serialize(Archive& ar, const unsigned int) {
        ar& boost::serialization::base_object<BackingMem>(*this);
    }
    friend class boost::serialization::access;
};

MemorySystem::Impl::Impl(Core::System& system_)
    : system{system_}, fcram_mem(std::make_shared<BackingMemImpl<Region::FCRAM>>(*this)),
      vram_mem(std::make_shared<BackingMemImpl<Region::VRAM>>(*this)),
      n3ds_extra_ram_mem(std::make_shared<BackingMemImpl<Region::N3DS>>(*this)),
      dsp_mem(std::make_shared<BackingMemImpl<Region::DSP>>(*this)) {}

MemorySystem::MemorySystem(Core::System& system) : impl(std::make_unique<Impl>(system)) {}
MemorySystem::~MemorySystem() = default;

template <class Archive>
void MemorySystem::serialize(Archive& ar, const unsigned int file_version) {
    ar&* impl.get();
}

SERIALIZE_IMPL(MemorySystem)

void MemorySystem::SetCurrentPageTable(std::shared_ptr<PageTable> page_table) {
    impl->current_page_table = page_table;
}

std::shared_ptr<PageTable> MemorySystem::GetCurrentPageTable() const {
    return impl->current_page_table;
}

void MemorySystem::RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
    impl->RasterizerFlushVirtualRegion(start, size, mode);
}

void MemorySystem::MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory,
                            PageType type) {
    LOG_DEBUG(HW_Memory, "Mapping {} onto {:08X}-{:08X}", (void*)memory.GetPtr(),
              base * CITRA_PAGE_SIZE, (base + size) * CITRA_PAGE_SIZE);

    if (impl->system.IsPoweredOn()) {
        RasterizerFlushVirtualRegion(base << CITRA_PAGE_BITS, size * CITRA_PAGE_SIZE,
                                     FlushMode::FlushAndInvalidate);
    }

    u32 end = base + size;
    while (base != end) {
        ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:08X}", base);

        page_table.attributes[base] = type;
        page_table.pointers[base] = memory;

        // If the memory to map is already rasterizer-cached, mark the page
        if (type == PageType::Memory && impl->cache_marker.IsCached(base * CITRA_PAGE_SIZE)) {
            page_table.attributes[base] = PageType::RasterizerCachedMemory;
            page_table.pointers[base] = nullptr;
        }

        base += 1;
        if (memory != nullptr && memory.GetSize() > CITRA_PAGE_SIZE)
            memory += CITRA_PAGE_SIZE;
    }
}

void MemorySystem::MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target) {
    ASSERT_MSG((size & CITRA_PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
    ASSERT_MSG((base & CITRA_PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
    MapPages(page_table, base / CITRA_PAGE_SIZE, size / CITRA_PAGE_SIZE, target, PageType::Memory);
}

void MemorySystem::UnmapRegion(PageTable& page_table, VAddr base, u32 size) {
    ASSERT_MSG((size & CITRA_PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
    ASSERT_MSG((base & CITRA_PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
    MapPages(page_table, base / CITRA_PAGE_SIZE, size / CITRA_PAGE_SIZE, nullptr,
             PageType::Unmapped);
}

MemoryRef MemorySystem::GetPointerForRasterizerCache(VAddr addr) const {
    return impl->GetPointerForRasterizerCache(addr);
}

void MemorySystem::RegisterPageTable(std::shared_ptr<PageTable> page_table) {
    impl->page_table_list.push_back(page_table);
}

void MemorySystem::UnregisterPageTable(std::shared_ptr<PageTable> page_table) {
    auto it = std::find(impl->page_table_list.begin(), impl->page_table_list.end(), page_table);
    if (it != impl->page_table_list.end()) {
        impl->page_table_list.erase(it);
    }
}

template <typename T>
T MemorySystem::Read(const VAddr vaddr) {
    const u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS];
    if (page_pointer) {
        // NOTE: Avoid adding any extra logic to this fast-path block
        T value;
        std::memcpy(&value, &page_pointer[vaddr & CITRA_PAGE_MASK], sizeof(T));
        return value;
    }

    // Custom Luma3ds mapping
    // Is there a more efficient way to do this?
    if (vaddr & (1 << 31)) {
        PAddr paddr = (vaddr & ~(1 << 31));
        if ((paddr & 0xF0000000) == Memory::FCRAM_PADDR) { // Check FCRAM region
            T value;
            std::memcpy(&value, GetFCRAMPointer(paddr - Memory::FCRAM_PADDR), sizeof(T));
            return value;
        } else if ((paddr & 0xF0000000) == 0x10000000 &&
                   paddr >= Memory::IO_AREA_PADDR) { // Check MMIO region
            return impl->system.GPU().ReadReg(static_cast<VAddr>(paddr) - Memory::IO_AREA_PADDR +
                                              0x1EC00000);
        }
    }

    PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS];
    switch (type) {
    case PageType::Unmapped:
        LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X} at PC 0x{:08X}", sizeof(T) * 8, vaddr,
                  impl->GetPC());
        return 0;
    case PageType::Memory:
        ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
        break;
    case PageType::RasterizerCachedMemory: {
        RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);

        T value;
        std::memcpy(&value, GetPointerForRasterizerCache(vaddr), sizeof(T));
        return value;
    }
    default:
        UNREACHABLE();
    }

    return T{};
}

template <typename T>
void MemorySystem::Write(const VAddr vaddr, const T data) {
    u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS];
    if (page_pointer) {
        // NOTE: Avoid adding any extra logic to this fast-path block
        std::memcpy(&page_pointer[vaddr & CITRA_PAGE_MASK], &data, sizeof(T));
        return;
    }

    // Custom Luma3ds mapping
    // Is there a more efficient way to do this?
    if (vaddr & (1 << 31)) {
        PAddr paddr = (vaddr & ~(1 << 31));
        if ((paddr & 0xF0000000) == Memory::FCRAM_PADDR) { // Check FCRAM region
            std::memcpy(GetFCRAMPointer(paddr - Memory::FCRAM_PADDR), &data, sizeof(T));
            return;
        } else if ((paddr & 0xF0000000) == 0x10000000 &&
                   paddr >= Memory::IO_AREA_PADDR) { // Check MMIO region
            ASSERT(sizeof(data) == sizeof(u32));
            impl->system.GPU().WriteReg(static_cast<VAddr>(paddr) - Memory::IO_AREA_PADDR +
                                            0x1EC00000,
                                        static_cast<u32>(data));
            return;
        }
    }

    PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS];
    switch (type) {
    case PageType::Unmapped:
        LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X} at PC 0x{:08X}",
                  sizeof(data) * 8, (u32)data, vaddr, impl->GetPC());
        return;
    case PageType::Memory:
        ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
        break;
    case PageType::RasterizerCachedMemory: {
        RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
        std::memcpy(GetPointerForRasterizerCache(vaddr), &data, sizeof(T));
        break;
    }
    default:
        UNREACHABLE();
    }
}

template <typename T>
bool MemorySystem::WriteExclusive(const VAddr vaddr, const T data, const T expected) {
    u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS];

    if (page_pointer) {
        const auto volatile_pointer =
            reinterpret_cast<volatile T*>(&page_pointer[vaddr & CITRA_PAGE_MASK]);
        return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
    }

    PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS];
    switch (type) {
    case PageType::Unmapped:
        LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X} at PC 0x{:08X}",
                  sizeof(data) * 8, static_cast<u32>(data), vaddr, impl->GetPC());
        return true;
    case PageType::Memory:
        ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
        return true;
    case PageType::RasterizerCachedMemory: {
        RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
        const auto volatile_pointer =
            reinterpret_cast<volatile T*>(GetPointerForRasterizerCache(vaddr).GetPtr());
        return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
    }
    default:
        UNREACHABLE();
    }
    return true;
}

bool MemorySystem::IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
    auto& page_table = *process.vm_manager.page_table;

    auto page_pointer = page_table.pointers[vaddr >> CITRA_PAGE_BITS];
    if (page_pointer) {
        return true;
    }

    if (page_table.attributes[vaddr >> CITRA_PAGE_BITS] == PageType::RasterizerCachedMemory) {
        return true;
    }

    return false;
}

bool MemorySystem::IsValidPhysicalAddress(const PAddr paddr) const {
    return GetPhysicalRef(paddr);
}

u8* MemorySystem::GetPointer(const VAddr vaddr) {
    u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS];
    if (page_pointer) {
        return page_pointer + (vaddr & CITRA_PAGE_MASK);
    }

    if (impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS] ==
        PageType::RasterizerCachedMemory) {
        return GetPointerForRasterizerCache(vaddr);
    }

    LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x} at PC 0x{:08X}", vaddr, impl->GetPC());
    return nullptr;
}

const u8* MemorySystem::GetPointer(const VAddr vaddr) const {
    const u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS];
    if (page_pointer) {
        return page_pointer + (vaddr & CITRA_PAGE_MASK);
    }

    if (impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS] ==
        PageType::RasterizerCachedMemory) {
        return GetPointerForRasterizerCache(vaddr);
    }

    LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x}", vaddr);
    return nullptr;
}

std::string MemorySystem::ReadCString(VAddr vaddr, std::size_t max_length) {
    std::string string;
    string.reserve(max_length);
    for (std::size_t i = 0; i < max_length; ++i) {
        char c = Read8(vaddr);
        if (c == '\0') {
            break;
        }

        string.push_back(c);
        ++vaddr;
    }

    string.shrink_to_fit();
    return string;
}

u8* MemorySystem::GetPhysicalPointer(PAddr address) const {
    return GetPhysicalRef(address);
}

MemoryRef MemorySystem::GetPhysicalRef(PAddr address) const {
    constexpr std::array memory_areas = {
        std::make_pair(VRAM_PADDR, VRAM_SIZE),
        std::make_pair(DSP_RAM_PADDR, DSP_RAM_SIZE),
        std::make_pair(FCRAM_PADDR, FCRAM_N3DS_SIZE),
        std::make_pair(N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE),
    };

    const auto area = std::find_if(memory_areas.begin(), memory_areas.end(), [&](const auto& area) {
        // Note: the region end check is inclusive because the user can pass in an address that
        // represents an open right bound
        return address >= area.first && address <= area.first + area.second;
    });

    if (area == memory_areas.end()) {
        LOG_ERROR(HW_Memory, "Unknown GetPhysicalPointer @ {:#08X} at PC {:#08X}", address,
                  impl->GetPC());
        return nullptr;
    }

    u32 offset_into_region = address - area->first;

    std::shared_ptr<BackingMem> target_mem = nullptr;
    switch (area->first) {
    case VRAM_PADDR:
        target_mem = impl->vram_mem;
        break;
    case DSP_RAM_PADDR:
        target_mem = impl->dsp_mem;
        break;
    case FCRAM_PADDR:
        target_mem = impl->fcram_mem;
        break;
    case N3DS_EXTRA_RAM_PADDR:
        target_mem = impl->n3ds_extra_ram_mem;
        break;
    default:
        UNREACHABLE();
    }
    if (offset_into_region > target_mem->GetSize()) {
        return {nullptr};
    }

    return {target_mem, offset_into_region};
}

std::vector<VAddr> MemorySystem::PhysicalToVirtualAddressForRasterizer(PAddr addr) {
    if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
        return {addr - VRAM_PADDR + VRAM_VADDR};
    }
    // NOTE: Order matters here.
    auto plg_ldr = Service::PLGLDR::GetService(impl->system);
    if (plg_ldr) {
        auto fb_addr = plg_ldr->GetPluginFBAddr();
        if (addr >= fb_addr && addr < fb_addr + PLUGIN_3GX_FB_SIZE) {
            return {addr - fb_addr + PLUGIN_3GX_FB_VADDR};
        }
    }
    if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
        return {addr - FCRAM_PADDR + LINEAR_HEAP_VADDR, addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR};
    }
    if (addr >= FCRAM_PADDR_END && addr < FCRAM_N3DS_PADDR_END) {
        return {addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR};
    }
    // While the physical <-> virtual mapping is 1:1 for the regions supported by the cache,
    // some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond
    // the end address of VRAM, causing the Virtual->Physical translation to fail when flushing
    // parts of the texture.
    LOG_ERROR(HW_Memory,
              "Trying to use invalid physical address for rasterizer: {:08X} at PC 0x{:08X}", addr,
              impl->GetPC());
    return {};
}

void MemorySystem::RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
    if (start == 0) {
        return;
    }

    u32 num_pages = ((start + size - 1) >> CITRA_PAGE_BITS) - (start >> CITRA_PAGE_BITS) + 1;
    PAddr paddr = start;

    for (unsigned i = 0; i < num_pages; ++i, paddr += CITRA_PAGE_SIZE) {
        for (VAddr vaddr : PhysicalToVirtualAddressForRasterizer(paddr)) {
            impl->cache_marker.Mark(vaddr, cached);
            for (auto& page_table : impl->page_table_list) {
                PageType& page_type = page_table->attributes[vaddr >> CITRA_PAGE_BITS];

                if (cached) {
                    // Switch page type to cached if now cached
                    switch (page_type) {
                    case PageType::Unmapped:
                        // It is not necessary for a process to have this region mapped into its
                        // address space, for example, a system module need not have a VRAM mapping.
                        break;
                    case PageType::Memory:
                        page_type = PageType::RasterizerCachedMemory;
                        page_table->pointers[vaddr >> CITRA_PAGE_BITS] = nullptr;
                        break;
                    default:
                        UNREACHABLE();
                    }
                } else {
                    // Switch page type to uncached if now uncached
                    switch (page_type) {
                    case PageType::Unmapped:
                        // It is not necessary for a process to have this region mapped into its
                        // address space, for example, a system module need not have a VRAM mapping.
                        break;
                    case PageType::RasterizerCachedMemory: {
                        page_type = PageType::Memory;
                        page_table->pointers[vaddr >> CITRA_PAGE_BITS] =
                            GetPointerForRasterizerCache(vaddr & ~CITRA_PAGE_MASK);
                        break;
                    }
                    default:
                        UNREACHABLE();
                    }
                }
            }
        }
    }
}

u8 MemorySystem::Read8(const VAddr addr) {
    return Read<u8>(addr);
}

u16 MemorySystem::Read16(const VAddr addr) {
    return Read<u16_le>(addr);
}

u32 MemorySystem::Read32(const VAddr addr) {
    return Read<u32_le>(addr);
}

u64 MemorySystem::Read64(const VAddr addr) {
    return Read<u64_le>(addr);
}

void MemorySystem::ReadBlock(const Kernel::Process& process, const VAddr src_addr,
                             void* dest_buffer, const std::size_t size) {
    return impl->ReadBlockImpl<false>(process, src_addr, dest_buffer, size);
}

void MemorySystem::ReadBlock(VAddr src_addr, void* dest_buffer, std::size_t size) {
    const auto& process = *impl->system.Kernel().GetCurrentProcess();
    return impl->ReadBlockImpl<false>(process, src_addr, dest_buffer, size);
}

void MemorySystem::Write8(const VAddr addr, const u8 data) {
    Write<u8>(addr, data);
}

void MemorySystem::Write16(const VAddr addr, const u16 data) {
    Write<u16_le>(addr, data);
}

void MemorySystem::Write32(const VAddr addr, const u32 data) {
    Write<u32_le>(addr, data);
}

void MemorySystem::Write64(const VAddr addr, const u64 data) {
    Write<u64_le>(addr, data);
}

bool MemorySystem::WriteExclusive8(const VAddr addr, const u8 data, const u8 expected) {
    return WriteExclusive<u8>(addr, data, expected);
}

bool MemorySystem::WriteExclusive16(const VAddr addr, const u16 data, const u16 expected) {
    return WriteExclusive<u16_le>(addr, data, expected);
}

bool MemorySystem::WriteExclusive32(const VAddr addr, const u32 data, const u32 expected) {
    return WriteExclusive<u32_le>(addr, data, expected);
}

bool MemorySystem::WriteExclusive64(const VAddr addr, const u64 data, const u64 expected) {
    return WriteExclusive<u64_le>(addr, data, expected);
}

void MemorySystem::WriteBlock(const Kernel::Process& process, const VAddr dest_addr,
                              const void* src_buffer, const std::size_t size) {
    return impl->WriteBlockImpl<false>(process, dest_addr, src_buffer, size);
}

void MemorySystem::WriteBlock(const VAddr dest_addr, const void* src_buffer,
                              const std::size_t size) {
    auto& process = *impl->system.Kernel().GetCurrentProcess();
    return impl->WriteBlockImpl<false>(process, dest_addr, src_buffer, size);
}

void MemorySystem::ZeroBlock(const Kernel::Process& process, const VAddr dest_addr,
                             const std::size_t size) {
    auto& page_table = *process.vm_manager.page_table;
    std::size_t remaining_size = size;
    std::size_t page_index = dest_addr >> CITRA_PAGE_BITS;
    std::size_t page_offset = dest_addr & CITRA_PAGE_MASK;

    while (remaining_size > 0) {
        const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size);
        const VAddr current_vaddr =
            static_cast<VAddr>((page_index << CITRA_PAGE_BITS) + page_offset);

        switch (page_table.attributes[page_index]) {
        case PageType::Unmapped: {
            LOG_ERROR(HW_Memory,
                      "unmapped ZeroBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC "
                      "0x{:08X}",
                      current_vaddr, dest_addr, size, impl->GetPC());
            break;
        }
        case PageType::Memory: {
            DEBUG_ASSERT(page_table.pointers[page_index]);

            u8* dest_ptr = page_table.pointers[page_index] + page_offset;
            std::memset(dest_ptr, 0, copy_amount);
            break;
        }
        case PageType::RasterizerCachedMemory: {
            RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
                                         FlushMode::Invalidate);
            std::memset(GetPointerForRasterizerCache(current_vaddr), 0, copy_amount);
            break;
        }
        default:
            UNREACHABLE();
        }

        page_index++;
        page_offset = 0;
        remaining_size -= copy_amount;
    }
}

void MemorySystem::CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
                             const std::size_t size) {
    CopyBlock(process, process, dest_addr, src_addr, size);
}

void MemorySystem::CopyBlock(const Kernel::Process& dest_process,
                             const Kernel::Process& src_process, VAddr dest_addr, VAddr src_addr,
                             std::size_t size) {
    auto& page_table = *src_process.vm_manager.page_table;
    std::size_t remaining_size = size;
    std::size_t page_index = src_addr >> CITRA_PAGE_BITS;
    std::size_t page_offset = src_addr & CITRA_PAGE_MASK;

    while (remaining_size > 0) {
        const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size);
        const VAddr current_vaddr =
            static_cast<VAddr>((page_index << CITRA_PAGE_BITS) + page_offset);

        switch (page_table.attributes[page_index]) {
        case PageType::Unmapped: {
            LOG_ERROR(HW_Memory,
                      "unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC "
                      "0x{:08X}",
                      current_vaddr, src_addr, size, impl->GetPC());
            ZeroBlock(dest_process, dest_addr, copy_amount);
            break;
        }
        case PageType::Memory: {
            DEBUG_ASSERT(page_table.pointers[page_index]);
            const u8* src_ptr = page_table.pointers[page_index] + page_offset;
            WriteBlock(dest_process, dest_addr, src_ptr, copy_amount);
            break;
        }
        case PageType::RasterizerCachedMemory: {
            RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
                                         FlushMode::Flush);
            WriteBlock(dest_process, dest_addr, GetPointerForRasterizerCache(current_vaddr),
                       copy_amount);
            break;
        }
        default:
            UNREACHABLE();
        }

        page_index++;
        page_offset = 0;
        dest_addr += static_cast<VAddr>(copy_amount);
        src_addr += static_cast<VAddr>(copy_amount);
        remaining_size -= copy_amount;
    }
}

u32 MemorySystem::GetFCRAMOffset(const u8* pointer) const {
    ASSERT(pointer >= impl->fcram.get() && pointer <= impl->fcram.get() + Memory::FCRAM_N3DS_SIZE);
    return static_cast<u32>(pointer - impl->fcram.get());
}

u8* MemorySystem::GetFCRAMPointer(std::size_t offset) {
    ASSERT(offset <= Memory::FCRAM_N3DS_SIZE);
    return impl->fcram.get() + offset;
}

const u8* MemorySystem::GetFCRAMPointer(std::size_t offset) const {
    ASSERT(offset <= Memory::FCRAM_N3DS_SIZE);
    return impl->fcram.get() + offset;
}

MemoryRef MemorySystem::GetFCRAMRef(std::size_t offset) const {
    ASSERT(offset <= Memory::FCRAM_N3DS_SIZE);
    return MemoryRef(impl->fcram_mem, offset);
}

void MemorySystem::SetDSP(AudioCore::DspInterface& dsp) {
    impl->dsp = &dsp;
}

} // namespace Memory