// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "audio_core/dsp_interface.h" #include "common/archives.h" #include "common/assert.h" #include "common/atomic_ops.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/settings.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/global.h" #include "core/hle/kernel/process.h" #include "core/hle/service/plgldr/plgldr.h" #include "core/memory.h" #include "video_core/gpu.h" #include "video_core/renderer_base.h" SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl) SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl) SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl) SERIALIZE_EXPORT_IMPL(Memory::MemorySystem::BackingMemImpl) namespace Memory { void PageTable::Clear() { pointers.raw.fill(nullptr); pointers.refs.fill(MemoryRef()); attributes.fill(PageType::Unmapped); } class RasterizerCacheMarker { public: void Mark(VAddr addr, bool cached) { bool* p = At(addr); if (p) *p = cached; } bool IsCached(VAddr addr) { bool* p = At(addr); if (p) return *p; return false; } private: bool* At(VAddr addr) { if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return &vram[(addr - VRAM_VADDR) / CITRA_PAGE_SIZE]; } if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return &linear_heap[(addr - LINEAR_HEAP_VADDR) / CITRA_PAGE_SIZE]; } if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) { return &new_linear_heap[(addr - NEW_LINEAR_HEAP_VADDR) / CITRA_PAGE_SIZE]; } if (addr >= PLUGIN_3GX_FB_VADDR && addr < PLUGIN_3GX_FB_VADDR_END) { return &plugin_fb[(addr - PLUGIN_3GX_FB_VADDR) / CITRA_PAGE_SIZE]; } return nullptr; } std::array vram{}; std::array linear_heap{}; std::array new_linear_heap{}; std::array plugin_fb{}; static_assert(sizeof(bool) == 1); friend class boost::serialization::access; template void serialize(Archive& ar, const unsigned int file_version) { ar& vram; ar& linear_heap; ar& new_linear_heap; ar& plugin_fb; } }; class MemorySystem::Impl { public: // Visual Studio would try to allocate these on compile time // if they are std::array which would exceed the memory limit. std::unique_ptr fcram = std::make_unique(Memory::FCRAM_N3DS_SIZE); std::unique_ptr vram = std::make_unique(Memory::VRAM_SIZE); std::unique_ptr n3ds_extra_ram = std::make_unique(Memory::N3DS_EXTRA_RAM_SIZE); Core::System& system; std::shared_ptr current_page_table = nullptr; RasterizerCacheMarker cache_marker; std::vector> page_table_list; AudioCore::DspInterface* dsp = nullptr; std::shared_ptr fcram_mem; std::shared_ptr vram_mem; std::shared_ptr n3ds_extra_ram_mem; std::shared_ptr dsp_mem; Impl(Core::System& system_); const u8* GetPtr(Region r) const { switch (r) { case Region::VRAM: return vram.get(); case Region::DSP: return dsp->GetDspMemory().data(); case Region::FCRAM: return fcram.get(); case Region::N3DS: return n3ds_extra_ram.get(); default: UNREACHABLE(); } } u8* GetPtr(Region r) { switch (r) { case Region::VRAM: return vram.get(); case Region::DSP: return dsp->GetDspMemory().data(); case Region::FCRAM: return fcram.get(); case Region::N3DS: return n3ds_extra_ram.get(); default: UNREACHABLE(); } } u32 GetSize(Region r) const { switch (r) { case Region::VRAM: return VRAM_SIZE; case Region::DSP: return DSP_RAM_SIZE; case Region::FCRAM: return FCRAM_N3DS_SIZE; case Region::N3DS: return N3DS_EXTRA_RAM_SIZE; default: UNREACHABLE(); } } u32 GetPC() const noexcept { return system.GetRunningCore().GetPC(); } template void ReadBlockImpl(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { auto& page_table = *process.vm_manager.page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> CITRA_PAGE_BITS; std::size_t page_offset = src_addr & CITRA_PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << CITRA_PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR( HW_Memory, "unmapped ReadBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC " "0x{:08X}", current_vaddr, src_addr, size, GetPC()); std::memset(dest_buffer, 0, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { if constexpr (!UNSAFE) { RasterizerFlushVirtualRegion(current_vaddr, static_cast(copy_amount), FlushMode::Flush); } std::memcpy(dest_buffer, GetPointerForRasterizerCache(current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } template void WriteBlockImpl(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { auto& page_table = *process.vm_manager.page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> CITRA_PAGE_BITS; std::size_t page_offset = dest_addr & CITRA_PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << CITRA_PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR( HW_Memory, "unmapped WriteBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC " "0x{:08X}", current_vaddr, dest_addr, size, GetPC()); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case PageType::RasterizerCachedMemory: { if constexpr (!UNSAFE) { RasterizerFlushVirtualRegion(current_vaddr, static_cast(copy_amount), FlushMode::Invalidate); } std::memcpy(GetPointerForRasterizerCache(current_vaddr), src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } MemoryRef GetPointerForRasterizerCache(VAddr addr) const { if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return {fcram_mem, addr - LINEAR_HEAP_VADDR}; } if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) { return {fcram_mem, addr - NEW_LINEAR_HEAP_VADDR}; } if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return {vram_mem, addr - VRAM_VADDR}; } if (addr >= PLUGIN_3GX_FB_VADDR && addr < PLUGIN_3GX_FB_VADDR_END) { auto plg_ldr = Service::PLGLDR::GetService(system); if (plg_ldr) { return {fcram_mem, addr - PLUGIN_3GX_FB_VADDR + plg_ldr->GetPluginFBAddr() - FCRAM_PADDR}; } } UNREACHABLE(); return MemoryRef{}; } void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) { const VAddr end = start + size; auto CheckRegion = [&](VAddr region_start, VAddr region_end, PAddr paddr_region_start) { if (start >= region_end || end <= region_start) { // No overlap with region return; } auto& renderer = system.GPU().Renderer(); VAddr overlap_start = std::max(start, region_start); VAddr overlap_end = std::min(end, region_end); PAddr physical_start = paddr_region_start + (overlap_start - region_start); u32 overlap_size = overlap_end - overlap_start; auto* rasterizer = renderer.Rasterizer(); switch (mode) { case FlushMode::Flush: rasterizer->FlushRegion(physical_start, overlap_size); break; case FlushMode::Invalidate: rasterizer->InvalidateRegion(physical_start, overlap_size); break; case FlushMode::FlushAndInvalidate: rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size); break; } }; CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END, FCRAM_PADDR); CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END, FCRAM_PADDR); CheckRegion(VRAM_VADDR, VRAM_VADDR_END, VRAM_PADDR); auto plg_ldr = Service::PLGLDR::GetService(system); if (plg_ldr && plg_ldr->GetPluginFBAddr()) { CheckRegion(PLUGIN_3GX_FB_VADDR, PLUGIN_3GX_FB_VADDR_END, plg_ldr->GetPluginFBAddr()); } } private: friend class boost::serialization::access; template void serialize(Archive& ar, const unsigned int file_version) { bool save_n3ds_ram = Settings::values.is_new_3ds.GetValue(); ar& save_n3ds_ram; ar& boost::serialization::make_binary_object(vram.get(), Memory::VRAM_SIZE); ar& boost::serialization::make_binary_object( fcram.get(), save_n3ds_ram ? Memory::FCRAM_N3DS_SIZE : Memory::FCRAM_SIZE); ar& boost::serialization::make_binary_object( n3ds_extra_ram.get(), save_n3ds_ram ? Memory::N3DS_EXTRA_RAM_SIZE : 0); ar& cache_marker; ar& page_table_list; // dsp is set from Core::System at startup ar& current_page_table; ar& fcram_mem; ar& vram_mem; ar& n3ds_extra_ram_mem; ar& dsp_mem; } }; // We use this rather than BufferMem because we don't want new objects to be allocated when // deserializing. This avoids unnecessary memory thrashing. template class MemorySystem::BackingMemImpl : public BackingMem { public: BackingMemImpl() : impl(*Core::Global().Memory().impl) {} explicit BackingMemImpl(MemorySystem::Impl& impl_) : impl(impl_) {} u8* GetPtr() override { return impl.GetPtr(R); } const u8* GetPtr() const override { return impl.GetPtr(R); } std::size_t GetSize() const override { return impl.GetSize(R); } private: MemorySystem::Impl& impl; template void serialize(Archive& ar, const unsigned int) { ar& boost::serialization::base_object(*this); } friend class boost::serialization::access; }; MemorySystem::Impl::Impl(Core::System& system_) : system{system_}, fcram_mem(std::make_shared>(*this)), vram_mem(std::make_shared>(*this)), n3ds_extra_ram_mem(std::make_shared>(*this)), dsp_mem(std::make_shared>(*this)) {} MemorySystem::MemorySystem(Core::System& system) : impl(std::make_unique(system)) {} MemorySystem::~MemorySystem() = default; template void MemorySystem::serialize(Archive& ar, const unsigned int file_version) { ar&* impl.get(); } SERIALIZE_IMPL(MemorySystem) void MemorySystem::SetCurrentPageTable(std::shared_ptr page_table) { impl->current_page_table = page_table; } std::shared_ptr MemorySystem::GetCurrentPageTable() const { return impl->current_page_table; } void MemorySystem::RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) { impl->RasterizerFlushVirtualRegion(start, size, mode); } void MemorySystem::MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping {} onto {:08X}-{:08X}", (void*)memory.GetPtr(), base * CITRA_PAGE_SIZE, (base + size) * CITRA_PAGE_SIZE); if (impl->system.IsPoweredOn()) { RasterizerFlushVirtualRegion(base << CITRA_PAGE_BITS, size * CITRA_PAGE_SIZE, FlushMode::FlushAndInvalidate); } u32 end = base + size; while (base != end) { ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:08X}", base); page_table.attributes[base] = type; page_table.pointers[base] = memory; // If the memory to map is already rasterizer-cached, mark the page if (type == PageType::Memory && impl->cache_marker.IsCached(base * CITRA_PAGE_SIZE)) { page_table.attributes[base] = PageType::RasterizerCachedMemory; page_table.pointers[base] = nullptr; } base += 1; if (memory != nullptr && memory.GetSize() > CITRA_PAGE_SIZE) memory += CITRA_PAGE_SIZE; } } void MemorySystem::MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target) { ASSERT_MSG((size & CITRA_PAGE_MASK) == 0, "non-page aligned size: {:08X}", size); ASSERT_MSG((base & CITRA_PAGE_MASK) == 0, "non-page aligned base: {:08X}", base); MapPages(page_table, base / CITRA_PAGE_SIZE, size / CITRA_PAGE_SIZE, target, PageType::Memory); } void MemorySystem::UnmapRegion(PageTable& page_table, VAddr base, u32 size) { ASSERT_MSG((size & CITRA_PAGE_MASK) == 0, "non-page aligned size: {:08X}", size); ASSERT_MSG((base & CITRA_PAGE_MASK) == 0, "non-page aligned base: {:08X}", base); MapPages(page_table, base / CITRA_PAGE_SIZE, size / CITRA_PAGE_SIZE, nullptr, PageType::Unmapped); } MemoryRef MemorySystem::GetPointerForRasterizerCache(VAddr addr) const { return impl->GetPointerForRasterizerCache(addr); } void MemorySystem::RegisterPageTable(std::shared_ptr page_table) { impl->page_table_list.push_back(page_table); } void MemorySystem::UnregisterPageTable(std::shared_ptr page_table) { auto it = std::find(impl->page_table_list.begin(), impl->page_table_list.end(), page_table); if (it != impl->page_table_list.end()) { impl->page_table_list.erase(it); } } template T MemorySystem::Read(const VAddr vaddr) { const u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr & CITRA_PAGE_MASK], sizeof(T)); return value; } // Custom Luma3ds mapping // Is there a more efficient way to do this? if (vaddr & (1 << 31)) { PAddr paddr = (vaddr & ~(1 << 31)); if ((paddr & 0xF0000000) == Memory::FCRAM_PADDR) { // Check FCRAM region T value; std::memcpy(&value, GetFCRAMPointer(paddr - Memory::FCRAM_PADDR), sizeof(T)); return value; } else if ((paddr & 0xF0000000) == 0x10000000 && paddr >= Memory::IO_AREA_PADDR) { // Check MMIO region return impl->system.GPU().ReadReg(static_cast(paddr) - Memory::IO_AREA_PADDR + 0x1EC00000); } } PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X} at PC 0x{:08X}", sizeof(T) * 8, vaddr, impl->GetPC()); return 0; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush); T value; std::memcpy(&value, GetPointerForRasterizerCache(vaddr), sizeof(T)); return value; } default: UNREACHABLE(); } return T{}; } template void MemorySystem::Write(const VAddr vaddr, const T data) { u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr & CITRA_PAGE_MASK], &data, sizeof(T)); return; } // Custom Luma3ds mapping // Is there a more efficient way to do this? if (vaddr & (1 << 31)) { PAddr paddr = (vaddr & ~(1 << 31)); if ((paddr & 0xF0000000) == Memory::FCRAM_PADDR) { // Check FCRAM region std::memcpy(GetFCRAMPointer(paddr - Memory::FCRAM_PADDR), &data, sizeof(T)); return; } else if ((paddr & 0xF0000000) == 0x10000000 && paddr >= Memory::IO_AREA_PADDR) { // Check MMIO region ASSERT(sizeof(data) == sizeof(u32)); impl->system.GPU().WriteReg(static_cast(paddr) - Memory::IO_AREA_PADDR + 0x1EC00000, static_cast(data)); return; } } PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X} at PC 0x{:08X}", sizeof(data) * 8, (u32)data, vaddr, impl->GetPC()); return; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate); std::memcpy(GetPointerForRasterizerCache(vaddr), &data, sizeof(T)); break; } default: UNREACHABLE(); } } template bool MemorySystem::WriteExclusive(const VAddr vaddr, const T data, const T expected) { u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { const auto volatile_pointer = reinterpret_cast(&page_pointer[vaddr & CITRA_PAGE_MASK]); return Common::AtomicCompareAndSwap(volatile_pointer, data, expected); } PageType type = impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X} at PC 0x{:08X}", sizeof(data) * 8, static_cast(data), vaddr, impl->GetPC()); return true; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr); return true; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate); const auto volatile_pointer = reinterpret_cast(GetPointerForRasterizerCache(vaddr).GetPtr()); return Common::AtomicCompareAndSwap(volatile_pointer, data, expected); } default: UNREACHABLE(); } return true; } bool MemorySystem::IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { auto& page_table = *process.vm_manager.page_table; auto page_pointer = page_table.pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { return true; } if (page_table.attributes[vaddr >> CITRA_PAGE_BITS] == PageType::RasterizerCachedMemory) { return true; } return false; } bool MemorySystem::IsValidPhysicalAddress(const PAddr paddr) const { return GetPhysicalRef(paddr); } u8* MemorySystem::GetPointer(const VAddr vaddr) { u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & CITRA_PAGE_MASK); } if (impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS] == PageType::RasterizerCachedMemory) { return GetPointerForRasterizerCache(vaddr); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x} at PC 0x{:08X}", vaddr, impl->GetPC()); return nullptr; } const u8* MemorySystem::GetPointer(const VAddr vaddr) const { const u8* page_pointer = impl->current_page_table->pointers[vaddr >> CITRA_PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & CITRA_PAGE_MASK); } if (impl->current_page_table->attributes[vaddr >> CITRA_PAGE_BITS] == PageType::RasterizerCachedMemory) { return GetPointerForRasterizerCache(vaddr); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x}", vaddr); return nullptr; } std::string MemorySystem::ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') { break; } string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } u8* MemorySystem::GetPhysicalPointer(PAddr address) const { return GetPhysicalRef(address); } MemoryRef MemorySystem::GetPhysicalRef(PAddr address) const { constexpr std::array memory_areas = { std::make_pair(VRAM_PADDR, VRAM_SIZE), std::make_pair(DSP_RAM_PADDR, DSP_RAM_SIZE), std::make_pair(FCRAM_PADDR, FCRAM_N3DS_SIZE), std::make_pair(N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE), }; const auto area = std::find_if(memory_areas.begin(), memory_areas.end(), [&](const auto& area) { // Note: the region end check is inclusive because the user can pass in an address that // represents an open right bound return address >= area.first && address <= area.first + area.second; }); if (area == memory_areas.end()) { LOG_ERROR(HW_Memory, "Unknown GetPhysicalPointer @ {:#08X} at PC {:#08X}", address, impl->GetPC()); return nullptr; } u32 offset_into_region = address - area->first; std::shared_ptr target_mem = nullptr; switch (area->first) { case VRAM_PADDR: target_mem = impl->vram_mem; break; case DSP_RAM_PADDR: target_mem = impl->dsp_mem; break; case FCRAM_PADDR: target_mem = impl->fcram_mem; break; case N3DS_EXTRA_RAM_PADDR: target_mem = impl->n3ds_extra_ram_mem; break; default: UNREACHABLE(); } if (offset_into_region > target_mem->GetSize()) { return {nullptr}; } return {target_mem, offset_into_region}; } std::vector MemorySystem::PhysicalToVirtualAddressForRasterizer(PAddr addr) { if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) { return {addr - VRAM_PADDR + VRAM_VADDR}; } // NOTE: Order matters here. auto plg_ldr = Service::PLGLDR::GetService(impl->system); if (plg_ldr) { auto fb_addr = plg_ldr->GetPluginFBAddr(); if (addr >= fb_addr && addr < fb_addr + PLUGIN_3GX_FB_SIZE) { return {addr - fb_addr + PLUGIN_3GX_FB_VADDR}; } } if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) { return {addr - FCRAM_PADDR + LINEAR_HEAP_VADDR, addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR}; } if (addr >= FCRAM_PADDR_END && addr < FCRAM_N3DS_PADDR_END) { return {addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR}; } // While the physical <-> virtual mapping is 1:1 for the regions supported by the cache, // some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond // the end address of VRAM, causing the Virtual->Physical translation to fail when flushing // parts of the texture. LOG_ERROR(HW_Memory, "Trying to use invalid physical address for rasterizer: {:08X} at PC 0x{:08X}", addr, impl->GetPC()); return {}; } void MemorySystem::RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) { if (start == 0) { return; } u32 num_pages = ((start + size - 1) >> CITRA_PAGE_BITS) - (start >> CITRA_PAGE_BITS) + 1; PAddr paddr = start; for (unsigned i = 0; i < num_pages; ++i, paddr += CITRA_PAGE_SIZE) { for (VAddr vaddr : PhysicalToVirtualAddressForRasterizer(paddr)) { impl->cache_marker.Mark(vaddr, cached); for (auto& page_table : impl->page_table_list) { PageType& page_type = page_table->attributes[vaddr >> CITRA_PAGE_BITS]; if (cached) { // Switch page type to cached if now cached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its // address space, for example, a system module need not have a VRAM mapping. break; case PageType::Memory: page_type = PageType::RasterizerCachedMemory; page_table->pointers[vaddr >> CITRA_PAGE_BITS] = nullptr; break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its // address space, for example, a system module need not have a VRAM mapping. break; case PageType::RasterizerCachedMemory: { page_type = PageType::Memory; page_table->pointers[vaddr >> CITRA_PAGE_BITS] = GetPointerForRasterizerCache(vaddr & ~CITRA_PAGE_MASK); break; } default: UNREACHABLE(); } } } } } } u8 MemorySystem::Read8(const VAddr addr) { return Read(addr); } u16 MemorySystem::Read16(const VAddr addr) { return Read(addr); } u32 MemorySystem::Read32(const VAddr addr) { return Read(addr); } u64 MemorySystem::Read64(const VAddr addr) { return Read(addr); } void MemorySystem::ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { return impl->ReadBlockImpl(process, src_addr, dest_buffer, size); } void MemorySystem::ReadBlock(VAddr src_addr, void* dest_buffer, std::size_t size) { const auto& process = *impl->system.Kernel().GetCurrentProcess(); return impl->ReadBlockImpl(process, src_addr, dest_buffer, size); } void MemorySystem::Write8(const VAddr addr, const u8 data) { Write(addr, data); } void MemorySystem::Write16(const VAddr addr, const u16 data) { Write(addr, data); } void MemorySystem::Write32(const VAddr addr, const u32 data) { Write(addr, data); } void MemorySystem::Write64(const VAddr addr, const u64 data) { Write(addr, data); } bool MemorySystem::WriteExclusive8(const VAddr addr, const u8 data, const u8 expected) { return WriteExclusive(addr, data, expected); } bool MemorySystem::WriteExclusive16(const VAddr addr, const u16 data, const u16 expected) { return WriteExclusive(addr, data, expected); } bool MemorySystem::WriteExclusive32(const VAddr addr, const u32 data, const u32 expected) { return WriteExclusive(addr, data, expected); } bool MemorySystem::WriteExclusive64(const VAddr addr, const u64 data, const u64 expected) { return WriteExclusive(addr, data, expected); } void MemorySystem::WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { return impl->WriteBlockImpl(process, dest_addr, src_buffer, size); } void MemorySystem::WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { auto& process = *impl->system.Kernel().GetCurrentProcess(); return impl->WriteBlockImpl(process, dest_addr, src_buffer, size); } void MemorySystem::ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) { auto& page_table = *process.vm_manager.page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> CITRA_PAGE_BITS; std::size_t page_offset = dest_addr & CITRA_PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << CITRA_PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC " "0x{:08X}", current_vaddr, dest_addr, size, impl->GetPC()); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast(copy_amount), FlushMode::Invalidate); std::memset(GetPointerForRasterizerCache(current_vaddr), 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void MemorySystem::CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const std::size_t size) { CopyBlock(process, process, dest_addr, src_addr, size); } void MemorySystem::CopyBlock(const Kernel::Process& dest_process, const Kernel::Process& src_process, VAddr dest_addr, VAddr src_addr, std::size_t size) { auto& page_table = *src_process.vm_manager.page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> CITRA_PAGE_BITS; std::size_t page_offset = src_addr & CITRA_PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(CITRA_PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << CITRA_PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {}) at PC " "0x{:08X}", current_vaddr, src_addr, size, impl->GetPC()); ZeroBlock(dest_process, dest_addr, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; WriteBlock(dest_process, dest_addr, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast(copy_amount), FlushMode::Flush); WriteBlock(dest_process, dest_addr, GetPointerForRasterizerCache(current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast(copy_amount); src_addr += static_cast(copy_amount); remaining_size -= copy_amount; } } u32 MemorySystem::GetFCRAMOffset(const u8* pointer) const { ASSERT(pointer >= impl->fcram.get() && pointer <= impl->fcram.get() + Memory::FCRAM_N3DS_SIZE); return static_cast(pointer - impl->fcram.get()); } u8* MemorySystem::GetFCRAMPointer(std::size_t offset) { ASSERT(offset <= Memory::FCRAM_N3DS_SIZE); return impl->fcram.get() + offset; } const u8* MemorySystem::GetFCRAMPointer(std::size_t offset) const { ASSERT(offset <= Memory::FCRAM_N3DS_SIZE); return impl->fcram.get() + offset; } MemoryRef MemorySystem::GetFCRAMRef(std::size_t offset) const { ASSERT(offset <= Memory::FCRAM_N3DS_SIZE); return MemoryRef(impl->fcram_mem, offset); } void MemorySystem::SetDSP(AudioCore::DspInterface& dsp) { impl->dsp = &dsp; } } // namespace Memory