aboutsummaryrefslogtreecommitdiff
path: root/src/core/hle/kernel/thread.cpp
blob: b531ae97f8b73772d9fcb70e2ca4a0a5892b2ee3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <climits>
#include <boost/serialization/string.hpp>
#include <boost/serialization/unordered_map.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/serialization/weak_ptr.hpp>
#include "common/archives.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/serialization/boost_flat_set.h"
#include "common/settings.h"
#include "core/arm/arm_interface.h"
#include "core/arm/skyeye_common/armstate.h"
#include "core/core.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
#include "core/memory.h"

SERIALIZE_EXPORT_IMPL(Kernel::Thread)
SERIALIZE_EXPORT_IMPL(Kernel::WakeupCallback)

namespace Kernel {

template <class Archive>
void ThreadManager::serialize(Archive& ar, const unsigned int) {
    ar& current_thread;
    ar& ready_queue;
    ar& wakeup_callback_table;
    ar& thread_list;
}
SERIALIZE_IMPL(ThreadManager)

template <class Archive>
void Thread::serialize(Archive& ar, const unsigned int file_version) {
    ar& boost::serialization::base_object<WaitObject>(*this);
    ar& context;
    ar& thread_id;
    ar& status;
    ar& entry_point;
    ar& stack_top;
    ar& nominal_priority;
    ar& current_priority;
    ar& last_running_ticks;
    ar& processor_id;
    ar& tls_address;
    ar& held_mutexes;
    ar& pending_mutexes;
    ar& owner_process;
    ar& wait_objects;
    ar& wait_address;
    ar& name;
    ar& wakeup_callback;
}
SERIALIZE_IMPL(Thread)

template <class Archive>
void WakeupCallback::serialize(Archive& ar, const unsigned int) {}
SERIALIZE_IMPL(WakeupCallback)

bool Thread::ShouldWait(const Thread* thread) const {
    return status != ThreadStatus::Dead;
}

void Thread::Acquire(Thread* thread) {
    ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}

Thread::Thread(KernelSystem& kernel, u32 core_id)
    : WaitObject(kernel), core_id(core_id), thread_manager(kernel.GetThreadManager(core_id)) {}

Thread::~Thread() = default;

Thread* ThreadManager::GetCurrentThread() const {
    return current_thread.get();
}

void Thread::Stop() {
    // Cancel any outstanding wakeup events for this thread
    thread_manager.kernel.timing.UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id);
    thread_manager.wakeup_callback_table.erase(thread_id);

    // Clean up thread from ready queue
    // This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
    if (status == ThreadStatus::Ready) {
        thread_manager.ready_queue.remove(current_priority, this);
    }

    status = ThreadStatus::Dead;

    WakeupAllWaitingThreads();

    // Clean up any dangling references in objects that this thread was waiting for
    for (auto& wait_object : wait_objects) {
        wait_object->RemoveWaitingThread(this);
    }
    wait_objects.clear();

    // Release all the mutexes that this thread holds
    ReleaseThreadMutexes(this);

    // Mark the TLS slot in the thread's page as free.
    u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::CITRA_PAGE_SIZE;
    u32 tls_slot =
        ((tls_address - Memory::TLS_AREA_VADDR) % Memory::CITRA_PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
    if (auto process = owner_process.lock()) {
        process->tls_slots[tls_page].reset(tls_slot);
        process->resource_limit->Release(ResourceLimitType::Thread, 1);
    }
}

void ThreadManager::SwitchContext(Thread* new_thread) {
    Thread* previous_thread = GetCurrentThread();
    std::shared_ptr<Process> previous_process = nullptr;

    Core::Timing& timing = kernel.timing;

    // Save context for previous thread
    if (previous_thread) {
        previous_process = previous_thread->owner_process.lock();
        previous_thread->last_running_ticks = cpu->GetTimer().GetTicks();
        cpu->SaveContext(previous_thread->context);

        if (previous_thread->status == ThreadStatus::Running) {
            // This is only the case when a reschedule is triggered without the current thread
            // yielding execution (i.e. an event triggered, system core time-sliced, etc)
            ready_queue.push_front(previous_thread->current_priority, previous_thread);
            previous_thread->status = ThreadStatus::Ready;
        }
    }

    // Load context of new thread
    if (new_thread) {
        ASSERT_MSG(new_thread->status == ThreadStatus::Ready,
                   "Thread must be ready to become running.");

        // Cancel any outstanding wakeup events for this thread
        timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id);

        current_thread = SharedFrom(new_thread);

        ready_queue.remove(new_thread->current_priority, new_thread);
        new_thread->status = ThreadStatus::Running;

        ASSERT(current_thread->owner_process.lock());
        if (previous_process != current_thread->owner_process.lock()) {
            kernel.SetCurrentProcessForCPU(current_thread->owner_process.lock(), cpu->GetID());
        }

        cpu->LoadContext(new_thread->context);
        cpu->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress());
    } else {
        current_thread = nullptr;
        // Note: We do not reset the current process and current page table when idling because
        // technically we haven't changed processes, our threads are just paused.
    }
}

Thread* ThreadManager::PopNextReadyThread() {
    Thread* next = nullptr;
    Thread* thread = GetCurrentThread();

    if (thread && thread->status == ThreadStatus::Running) {
        do {
            // We have to do better than the current thread.
            // This call returns null when that's not possible.
            next = ready_queue.pop_first_better(thread->current_priority);
            if (!next) {
                // Otherwise just keep going with the current thread
                next = thread;
                break;
            } else if (!next->can_schedule)
                unscheduled_ready_queue.push_back(next);
        } while (!next->can_schedule);
    } else {
        do {
            next = ready_queue.pop_first();
            if (next && !next->can_schedule)
                unscheduled_ready_queue.push_back(next);
        } while (next && !next->can_schedule);
    }

    while (!unscheduled_ready_queue.empty()) {
        auto t = std::move(unscheduled_ready_queue.back());
        ready_queue.push_back(t->current_priority, t);
        unscheduled_ready_queue.pop_back();
    }

    return next;
}

void ThreadManager::WaitCurrentThread_Sleep() {
    Thread* thread = GetCurrentThread();
    thread->status = ThreadStatus::WaitSleep;
}

void ThreadManager::ExitCurrentThread() {
    current_thread->Stop();
    std::erase(thread_list, current_thread);
    kernel.PrepareReschedule();
}

void ThreadManager::TerminateProcessThreads(std::shared_ptr<Process> process) {
    auto iter = thread_list.begin();
    while (iter != thread_list.end()) {
        auto& thread = *iter;
        if (thread == current_thread || thread->owner_process.lock() != process) {
            iter++;
            continue;
        }

        if (thread->status != ThreadStatus::WaitSynchAny &&
            thread->status != ThreadStatus::WaitSynchAll) {
            // TODO: How does the real kernel handle non-waiting threads?
            LOG_WARNING(Kernel, "Terminating non-waiting thread {}", thread->thread_id);
        }

        thread->Stop();
        iter = thread_list.erase(iter);
    }

    // Kill the current thread last, if applicable.
    if (current_thread != nullptr && current_thread->owner_process.lock() == process) {
        ExitCurrentThread();
    }
}

void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) {
    std::shared_ptr<Thread> thread = SharedFrom(wakeup_callback_table.at(thread_id));
    if (thread == nullptr) {
        LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id);
        return;
    }

    if (thread->status == ThreadStatus::WaitSynchAny ||
        thread->status == ThreadStatus::WaitSynchAll || thread->status == ThreadStatus::WaitArb ||
        thread->status == ThreadStatus::WaitHleEvent) {

        // Invoke the wakeup callback before clearing the wait objects
        if (thread->wakeup_callback)
            thread->wakeup_callback->WakeUp(ThreadWakeupReason::Timeout, thread, nullptr);

        // Remove the thread from each of its waiting objects' waitlists
        for (auto& object : thread->wait_objects)
            object->RemoveWaitingThread(thread.get());
        thread->wait_objects.clear();
    }

    thread->ResumeFromWait();
}

void Thread::WakeAfterDelay(s64 nanoseconds, bool thread_safe_mode) {
    // Don't schedule a wakeup if the thread wants to wait forever
    if (nanoseconds == -1)
        return;
    std::size_t core = thread_safe_mode ? core_id : std::numeric_limits<std::size_t>::max();

    thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds),
                                               thread_manager.ThreadWakeupEventType, thread_id,
                                               core, thread_safe_mode);
}

void Thread::ResumeFromWait() {
    ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");

    switch (status) {
    case ThreadStatus::WaitSynchAll:
    case ThreadStatus::WaitSynchAny:
    case ThreadStatus::WaitHleEvent:
    case ThreadStatus::WaitArb:
    case ThreadStatus::WaitSleep:
    case ThreadStatus::WaitIPC:
    case ThreadStatus::Dormant:
        break;

    case ThreadStatus::Ready:
        // The thread's wakeup callback must have already been cleared when the thread was first
        // awoken.
        ASSERT(wakeup_callback == nullptr);
        // If the thread is waiting on multiple wait objects, it might be awoken more than once
        // before actually resuming. We can ignore subsequent wakeups if the thread status has
        // already been set to ThreadStatus::Ready.
        return;

    case ThreadStatus::Running:
        DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
        return;
    case ThreadStatus::Dead:
        // This should never happen, as threads must complete before being stopped.
        DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
                         GetObjectId());
        return;
    }

    wakeup_callback = nullptr;

    thread_manager.ready_queue.push_back(current_priority, this);
    status = ThreadStatus::Ready;
    thread_manager.kernel.PrepareReschedule();
}

void ThreadManager::DebugThreadQueue() {
    Thread* thread = GetCurrentThread();
    if (!thread) {
        LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
    } else {
        LOG_DEBUG(Kernel, "0x{:02X} {} (current)", thread->current_priority,
                  GetCurrentThread()->GetObjectId());
    }

    for (auto& t : thread_list) {
        u32 priority = ready_queue.contains(t.get());
        if (priority != UINT_MAX) {
            LOG_DEBUG(Kernel, "0x{:02X} {}", priority, t->GetObjectId());
        }
    }
}

/**
 * Resets a thread context, making it ready to be scheduled and run by the CPU
 * @param context Thread context to reset
 * @param stack_top Address of the top of the stack
 * @param entry_point Address of entry point for execution
 * @param arg User argument for thread
 */
static void ResetThreadContext(Core::ARM_Interface::ThreadContext& context, u32 stack_top,
                               u32 entry_point, u32 arg) {
    context.cpu_registers[0] = arg;
    context.SetProgramCounter(entry_point);
    context.SetStackPointer(stack_top);
    context.cpsr = USER32MODE | ((entry_point & 1) << 5); // Usermode and THUMB mode
}

ResultVal<std::shared_ptr<Thread>> KernelSystem::CreateThread(
    std::string name, VAddr entry_point, u32 priority, u32 arg, s32 processor_id, VAddr stack_top,
    std::shared_ptr<Process> owner_process, bool make_ready) {
    // Check if priority is in ranged. Lowest priority -> highest priority id.
    if (priority > ThreadPrioLowest) {
        LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
        return ResultOutOfRange;
    }

    if (processor_id > ThreadProcessorIdMax) {
        LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
        return ResultOutOfRangeKernel;
    }

    // TODO(yuriks): Other checks, returning 0xD9001BEA
    if (!memory.IsValidVirtualAddress(*owner_process, entry_point)) {
        LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:08x}", name, entry_point);
        // TODO: Verify error
        return Result(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
                      ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
    }

    auto thread = std::make_shared<Thread>(*this, processor_id);

    thread_managers[processor_id]->thread_list.push_back(thread);
    thread_managers[processor_id]->ready_queue.prepare(priority);

    thread->thread_id = NewThreadId();
    thread->status = ThreadStatus::Dormant;
    thread->entry_point = entry_point;
    thread->stack_top = stack_top;
    thread->nominal_priority = thread->current_priority = priority;
    thread->last_running_ticks = timing.GetTimer(processor_id)->GetTicks();
    thread->processor_id = processor_id;
    thread->wait_objects.clear();
    thread->wait_address = 0;
    thread->name = std::move(name);
    thread_managers[processor_id]->wakeup_callback_table[thread->thread_id] = thread.get();
    thread->owner_process = owner_process;
    CASCADE_RESULT(thread->tls_address, owner_process->AllocateThreadLocalStorage());

    // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
    // to initialize the context
    ResetThreadContext(thread->context, stack_top, entry_point, arg);

    if (make_ready) {
        thread_managers[processor_id]->ready_queue.push_back(thread->current_priority,
                                                             thread.get());
        thread->status = ThreadStatus::Ready;
    }

    return thread;
}

void Thread::SetPriority(u32 priority) {
    ASSERT_MSG(priority <= ThreadPrioLowest && priority >= ThreadPrioHighest,
               "Invalid priority value.");
    // If thread was ready, adjust queues
    if (status == ThreadStatus::Ready)
        thread_manager.ready_queue.move(this, current_priority, priority);
    else
        thread_manager.ready_queue.prepare(priority);

    nominal_priority = current_priority = priority;
}

void Thread::UpdatePriority() {
    u32 best_priority = nominal_priority;
    for (auto& mutex : held_mutexes) {
        if (mutex->priority < best_priority)
            best_priority = mutex->priority;
    }
    BoostPriority(best_priority);
}

void Thread::BoostPriority(u32 priority) {
    // If thread was ready, adjust queues
    if (status == ThreadStatus::Ready)
        thread_manager.ready_queue.move(this, current_priority, priority);
    else
        thread_manager.ready_queue.prepare(priority);
    current_priority = priority;
}

std::shared_ptr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority,
                                        std::shared_ptr<Process> owner_process) {

    constexpr s64 sleep_app_thread_ns = 2'600'000'000LL;
    constexpr u32 system_module_tid_high = 0x00040130;

    const bool is_lle_service =
        static_cast<u32>(owner_process->codeset->program_id >> 32) == system_module_tid_high;

    s64 sleep_time_ns = 0;
    if (!is_lle_service && kernel.GetAppMainThreadExtendedSleep()) {
        if (Settings::values.delay_start_for_lle_modules) {
            sleep_time_ns = sleep_app_thread_ns;
        }
        kernel.SetAppMainThreadExtendedSleep(false);
    }

    // Initialize new "main" thread
    auto thread_res =
        kernel.CreateThread("main", entry_point, priority, 0, owner_process->ideal_processor,
                            Memory::HEAP_VADDR_END, owner_process, sleep_time_ns == 0);

    std::shared_ptr<Thread> thread = std::move(thread_res).Unwrap();

    thread->context.fpscr =
        FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC; // 0x03C00010

    if (sleep_time_ns != 0) {
        thread->status = ThreadStatus::WaitSleep;
        thread->WakeAfterDelay(sleep_time_ns);
    }

    // Note: The newly created thread will be run when the scheduler fires.
    return thread;
}

bool ThreadManager::HaveReadyThreads() {
    return ready_queue.get_first() != nullptr;
}

void ThreadManager::Reschedule() {
    Thread* cur = GetCurrentThread();
    Thread* next = PopNextReadyThread();

    if (cur && next) {
        LOG_TRACE(Kernel, "context switch {} -> {}", cur->GetObjectId(), next->GetObjectId());
    } else if (cur) {
        LOG_TRACE(Kernel, "context switch {} -> idle", cur->GetObjectId());
    } else if (next) {
        LOG_TRACE(Kernel, "context switch idle -> {}", next->GetObjectId());
    } else {
        LOG_TRACE(Kernel, "context switch idle -> idle, do nothing");
        return;
    }

    SwitchContext(next);
}

void Thread::SetWaitSynchronizationResult(Result result) {
    context.cpu_registers[0] = result.raw;
}

void Thread::SetWaitSynchronizationOutput(s32 output) {
    context.cpu_registers[1] = output;
}

s32 Thread::GetWaitObjectIndex(const WaitObject* object) const {
    ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
    const auto match = std::find_if(wait_objects.rbegin(), wait_objects.rend(),
                                    [object](const auto& p) { return p.get() == object; });
    return static_cast<s32>(std::distance(match, wait_objects.rend()) - 1);
}

VAddr Thread::GetCommandBufferAddress() const {
    // Offset from the start of TLS at which the IPC command buffer begins.
    constexpr u32 command_header_offset = 0x80;
    return GetTLSAddress() + command_header_offset;
}

ThreadManager::ThreadManager(Kernel::KernelSystem& kernel, u32 core_id) : kernel(kernel) {
    ThreadWakeupEventType = kernel.timing.RegisterEvent(
        "ThreadWakeupCallback_" + std::to_string(core_id),
        [this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); });
}

ThreadManager::~ThreadManager() {
    for (auto& t : thread_list) {
        t->Stop();
    }
}

std::span<const std::shared_ptr<Thread>> ThreadManager::GetThreadList() {
    return thread_list;
}

} // namespace Kernel