// Copyright 2014 Citra Emulator Project / PPSSPP Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/archives.h" #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/serialization/boost_flat_set.h" #include "common/settings.h" #include "core/arm/arm_interface.h" #include "core/arm/skyeye_common/armstate.h" #include "core/core.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/thread.h" #include "core/hle/result.h" #include "core/memory.h" SERIALIZE_EXPORT_IMPL(Kernel::Thread) SERIALIZE_EXPORT_IMPL(Kernel::WakeupCallback) namespace Kernel { template void ThreadManager::serialize(Archive& ar, const unsigned int) { ar& current_thread; ar& ready_queue; ar& wakeup_callback_table; ar& thread_list; } SERIALIZE_IMPL(ThreadManager) template void Thread::serialize(Archive& ar, const unsigned int file_version) { ar& boost::serialization::base_object(*this); ar& context; ar& thread_id; ar& status; ar& entry_point; ar& stack_top; ar& nominal_priority; ar& current_priority; ar& last_running_ticks; ar& processor_id; ar& tls_address; ar& held_mutexes; ar& pending_mutexes; ar& owner_process; ar& wait_objects; ar& wait_address; ar& name; ar& wakeup_callback; } SERIALIZE_IMPL(Thread) template void WakeupCallback::serialize(Archive& ar, const unsigned int) {} SERIALIZE_IMPL(WakeupCallback) bool Thread::ShouldWait(const Thread* thread) const { return status != ThreadStatus::Dead; } void Thread::Acquire(Thread* thread) { ASSERT_MSG(!ShouldWait(thread), "object unavailable!"); } Thread::Thread(KernelSystem& kernel, u32 core_id) : WaitObject(kernel), core_id(core_id), thread_manager(kernel.GetThreadManager(core_id)) {} Thread::~Thread() = default; Thread* ThreadManager::GetCurrentThread() const { return current_thread.get(); } void Thread::Stop() { // Cancel any outstanding wakeup events for this thread thread_manager.kernel.timing.UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id); thread_manager.wakeup_callback_table.erase(thread_id); // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == ThreadStatus::Ready) { thread_manager.ready_queue.remove(current_priority, this); } status = ThreadStatus::Dead; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } wait_objects.clear(); // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Mark the TLS slot in the thread's page as free. u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::CITRA_PAGE_SIZE; u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::CITRA_PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; if (auto process = owner_process.lock()) { process->tls_slots[tls_page].reset(tls_slot); process->resource_limit->Release(ResourceLimitType::Thread, 1); } } void ThreadManager::SwitchContext(Thread* new_thread) { Thread* previous_thread = GetCurrentThread(); std::shared_ptr previous_process = nullptr; Core::Timing& timing = kernel.timing; // Save context for previous thread if (previous_thread) { previous_process = previous_thread->owner_process.lock(); previous_thread->last_running_ticks = cpu->GetTimer().GetTicks(); cpu->SaveContext(previous_thread->context); if (previous_thread->status == ThreadStatus::Running) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = ThreadStatus::Ready; } } // Load context of new thread if (new_thread) { ASSERT_MSG(new_thread->status == ThreadStatus::Ready, "Thread must be ready to become running."); // Cancel any outstanding wakeup events for this thread timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id); current_thread = SharedFrom(new_thread); ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = ThreadStatus::Running; ASSERT(current_thread->owner_process.lock()); if (previous_process != current_thread->owner_process.lock()) { kernel.SetCurrentProcessForCPU(current_thread->owner_process.lock(), cpu->GetID()); } cpu->LoadContext(new_thread->context); cpu->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress()); } else { current_thread = nullptr; // Note: We do not reset the current process and current page table when idling because // technically we haven't changed processes, our threads are just paused. } } Thread* ThreadManager::PopNextReadyThread() { Thread* next = nullptr; Thread* thread = GetCurrentThread(); if (thread && thread->status == ThreadStatus::Running) { do { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); if (!next) { // Otherwise just keep going with the current thread next = thread; break; } else if (!next->can_schedule) unscheduled_ready_queue.push_back(next); } while (!next->can_schedule); } else { do { next = ready_queue.pop_first(); if (next && !next->can_schedule) unscheduled_ready_queue.push_back(next); } while (next && !next->can_schedule); } while (!unscheduled_ready_queue.empty()) { auto t = std::move(unscheduled_ready_queue.back()); ready_queue.push_back(t->current_priority, t); unscheduled_ready_queue.pop_back(); } return next; } void ThreadManager::WaitCurrentThread_Sleep() { Thread* thread = GetCurrentThread(); thread->status = ThreadStatus::WaitSleep; } void ThreadManager::ExitCurrentThread() { current_thread->Stop(); std::erase(thread_list, current_thread); kernel.PrepareReschedule(); } void ThreadManager::TerminateProcessThreads(std::shared_ptr process) { auto iter = thread_list.begin(); while (iter != thread_list.end()) { auto& thread = *iter; if (thread == current_thread || thread->owner_process.lock() != process) { iter++; continue; } if (thread->status != ThreadStatus::WaitSynchAny && thread->status != ThreadStatus::WaitSynchAll) { // TODO: How does the real kernel handle non-waiting threads? LOG_WARNING(Kernel, "Terminating non-waiting thread {}", thread->thread_id); } thread->Stop(); iter = thread_list.erase(iter); } // Kill the current thread last, if applicable. if (current_thread != nullptr && current_thread->owner_process.lock() == process) { ExitCurrentThread(); } } void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) { std::shared_ptr thread = SharedFrom(wakeup_callback_table.at(thread_id)); if (thread == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id); return; } if (thread->status == ThreadStatus::WaitSynchAny || thread->status == ThreadStatus::WaitSynchAll || thread->status == ThreadStatus::WaitArb || thread->status == ThreadStatus::WaitHleEvent) { // Invoke the wakeup callback before clearing the wait objects if (thread->wakeup_callback) thread->wakeup_callback->WakeUp(ThreadWakeupReason::Timeout, thread, nullptr); // Remove the thread from each of its waiting objects' waitlists for (auto& object : thread->wait_objects) object->RemoveWaitingThread(thread.get()); thread->wait_objects.clear(); } thread->ResumeFromWait(); } void Thread::WakeAfterDelay(s64 nanoseconds, bool thread_safe_mode) { // Don't schedule a wakeup if the thread wants to wait forever if (nanoseconds == -1) return; std::size_t core = thread_safe_mode ? core_id : std::numeric_limits::max(); thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType, thread_id, core, thread_safe_mode); } void Thread::ResumeFromWait() { ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects"); switch (status) { case ThreadStatus::WaitSynchAll: case ThreadStatus::WaitSynchAny: case ThreadStatus::WaitHleEvent: case ThreadStatus::WaitArb: case ThreadStatus::WaitSleep: case ThreadStatus::WaitIPC: case ThreadStatus::Dormant: break; case ThreadStatus::Ready: // The thread's wakeup callback must have already been cleared when the thread was first // awoken. ASSERT(wakeup_callback == nullptr); // If the thread is waiting on multiple wait objects, it might be awoken more than once // before actually resuming. We can ignore subsequent wakeups if the thread status has // already been set to ThreadStatus::Ready. return; case ThreadStatus::Running: DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId()); return; case ThreadStatus::Dead: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.", GetObjectId()); return; } wakeup_callback = nullptr; thread_manager.ready_queue.push_back(current_priority, this); status = ThreadStatus::Ready; thread_manager.kernel.PrepareReschedule(); } void ThreadManager::DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x{:02X} {} (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { u32 priority = ready_queue.contains(t.get()); if (priority != UINT_MAX) { LOG_DEBUG(Kernel, "0x{:02X} {}", priority, t->GetObjectId()); } } } /** * Resets a thread context, making it ready to be scheduled and run by the CPU * @param context Thread context to reset * @param stack_top Address of the top of the stack * @param entry_point Address of entry point for execution * @param arg User argument for thread */ static void ResetThreadContext(Core::ARM_Interface::ThreadContext& context, u32 stack_top, u32 entry_point, u32 arg) { context.cpu_registers[0] = arg; context.SetProgramCounter(entry_point); context.SetStackPointer(stack_top); context.cpsr = USER32MODE | ((entry_point & 1) << 5); // Usermode and THUMB mode } ResultVal> KernelSystem::CreateThread( std::string name, VAddr entry_point, u32 priority, u32 arg, s32 processor_id, VAddr stack_top, std::shared_ptr owner_process, bool make_ready) { // Check if priority is in ranged. Lowest priority -> highest priority id. if (priority > ThreadPrioLowest) { LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority); return ResultOutOfRange; } if (processor_id > ThreadProcessorIdMax) { LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id); return ResultOutOfRangeKernel; } // TODO(yuriks): Other checks, returning 0xD9001BEA if (!memory.IsValidVirtualAddress(*owner_process, entry_point)) { LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:08x}", name, entry_point); // TODO: Verify error return Result(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } auto thread = std::make_shared(*this, processor_id); thread_managers[processor_id]->thread_list.push_back(thread); thread_managers[processor_id]->ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = ThreadStatus::Dormant; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->nominal_priority = thread->current_priority = priority; thread->last_running_ticks = timing.GetTimer(processor_id)->GetTicks(); thread->processor_id = processor_id; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread_managers[processor_id]->wakeup_callback_table[thread->thread_id] = thread.get(); thread->owner_process = owner_process; CASCADE_RESULT(thread->tls_address, owner_process->AllocateThreadLocalStorage()); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context ResetThreadContext(thread->context, stack_top, entry_point, arg); if (make_ready) { thread_managers[processor_id]->ready_queue.push_back(thread->current_priority, thread.get()); thread->status = ThreadStatus::Ready; } return thread; } void Thread::SetPriority(u32 priority) { ASSERT_MSG(priority <= ThreadPrioLowest && priority >= ThreadPrioHighest, "Invalid priority value."); // If thread was ready, adjust queues if (status == ThreadStatus::Ready) thread_manager.ready_queue.move(this, current_priority, priority); else thread_manager.ready_queue.prepare(priority); nominal_priority = current_priority = priority; } void Thread::UpdatePriority() { u32 best_priority = nominal_priority; for (auto& mutex : held_mutexes) { if (mutex->priority < best_priority) best_priority = mutex->priority; } BoostPriority(best_priority); } void Thread::BoostPriority(u32 priority) { // If thread was ready, adjust queues if (status == ThreadStatus::Ready) thread_manager.ready_queue.move(this, current_priority, priority); else thread_manager.ready_queue.prepare(priority); current_priority = priority; } std::shared_ptr SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority, std::shared_ptr owner_process) { constexpr s64 sleep_app_thread_ns = 2'600'000'000LL; constexpr u32 system_module_tid_high = 0x00040130; const bool is_lle_service = static_cast(owner_process->codeset->program_id >> 32) == system_module_tid_high; s64 sleep_time_ns = 0; if (!is_lle_service && kernel.GetAppMainThreadExtendedSleep()) { if (Settings::values.delay_start_for_lle_modules) { sleep_time_ns = sleep_app_thread_ns; } kernel.SetAppMainThreadExtendedSleep(false); } // Initialize new "main" thread auto thread_res = kernel.CreateThread("main", entry_point, priority, 0, owner_process->ideal_processor, Memory::HEAP_VADDR_END, owner_process, sleep_time_ns == 0); std::shared_ptr thread = std::move(thread_res).Unwrap(); thread->context.fpscr = FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC; // 0x03C00010 if (sleep_time_ns != 0) { thread->status = ThreadStatus::WaitSleep; thread->WakeAfterDelay(sleep_time_ns); } // Note: The newly created thread will be run when the scheduler fires. return thread; } bool ThreadManager::HaveReadyThreads() { return ready_queue.get_first() != nullptr; } void ThreadManager::Reschedule() { Thread* cur = GetCurrentThread(); Thread* next = PopNextReadyThread(); if (cur && next) { LOG_TRACE(Kernel, "context switch {} -> {}", cur->GetObjectId(), next->GetObjectId()); } else if (cur) { LOG_TRACE(Kernel, "context switch {} -> idle", cur->GetObjectId()); } else if (next) { LOG_TRACE(Kernel, "context switch idle -> {}", next->GetObjectId()); } else { LOG_TRACE(Kernel, "context switch idle -> idle, do nothing"); return; } SwitchContext(next); } void Thread::SetWaitSynchronizationResult(Result result) { context.cpu_registers[0] = result.raw; } void Thread::SetWaitSynchronizationOutput(s32 output) { context.cpu_registers[1] = output; } s32 Thread::GetWaitObjectIndex(const WaitObject* object) const { ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything"); const auto match = std::find_if(wait_objects.rbegin(), wait_objects.rend(), [object](const auto& p) { return p.get() == object; }); return static_cast(std::distance(match, wait_objects.rend()) - 1); } VAddr Thread::GetCommandBufferAddress() const { // Offset from the start of TLS at which the IPC command buffer begins. constexpr u32 command_header_offset = 0x80; return GetTLSAddress() + command_header_offset; } ThreadManager::ThreadManager(Kernel::KernelSystem& kernel, u32 core_id) : kernel(kernel) { ThreadWakeupEventType = kernel.timing.RegisterEvent( "ThreadWakeupCallback_" + std::to_string(core_id), [this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); }); } ThreadManager::~ThreadManager() { for (auto& t : thread_list) { t->Stop(); } } std::span> ThreadManager::GetThreadList() { return thread_list; } } // namespace Kernel