aboutsummaryrefslogtreecommitdiff
path: root/externals/dynarmic/docs/Design.md
diff options
context:
space:
mode:
Diffstat (limited to 'externals/dynarmic/docs/Design.md')
-rw-r--r--externals/dynarmic/docs/Design.md324
1 files changed, 324 insertions, 0 deletions
diff --git a/externals/dynarmic/docs/Design.md b/externals/dynarmic/docs/Design.md
new file mode 100644
index 0000000000..3c0deb5972
--- /dev/null
+++ b/externals/dynarmic/docs/Design.md
@@ -0,0 +1,324 @@
+# Dynarmic Design Documentation
+
+Dynarmic is a dynamic recompiler for the ARMv6K architecture. Future plans for dynarmic include
+support for other versions of the ARM architecture, having a interpreter mode, and adding support
+for other architectures.
+
+Users of this library interact with it primarily through the interface provided in
+[`src/dynarmic/interface`](../src/dynarmic/interface). Users specify how dynarmic's CPU core interacts with
+the rest of their system providing an implementation of the relevant `UserCallbacks` interface.
+Users setup the CPU state using member functions of `Jit`, then call `Jit::Execute` to start CPU
+execution. The callbacks defined on `UserCallbacks` may be called from dynamically generated code,
+so users of the library should not depend on the stack being in a walkable state for unwinding.
+
+* A32: [`Jit`](../src/dynarmic/interface/A32/a32.h), [`UserCallbacks`](../src/dynarmic/interface/A32/config.h)
+* A64: [`Jit`](../src/dynarmic/interface/A64/a64.h), [`UserCallbacks`](../src/dynarmic/interface/A64/config.h)
+
+Dynarmic reads instructions from memory by calling `UserCallbacks::MemoryReadCode`. These
+instructions then pass through several stages:
+
+1. Decoding (Identifying what type of instruction it is and breaking it up into fields)
+2. Translation (Generation of high-level IR from the instruction)
+3. Optimization (Eliminiation of redundant microinstructions, other speed improvements)
+4. Emission (Generation of host-executable code into memory)
+5. Execution (Host CPU jumps to the start of emitted code and runs it)
+
+Using the A32 frontend with the x64 backend as an example:
+
+* Decoding is done by [double dispatch](https://en.wikipedia.org/wiki/Visitor_pattern) in
+ [`src/frontend/A32/decoder/{arm.h,thumb16.h,thumb32.h}`](../src/dynarmic/frontend/A32/decoder/).
+* Translation is done by the visitors in [`src/dynarmic/frontend/A32/translate/translate_{arm,thumb}.cpp`](../src/dynarmic/frontend/A32/translate/).
+ The function [`Translate`](../src/dynarmic/frontend/A32/translate/translate.h) takes a starting memory location,
+ some CPU state, and memory reader callback and returns a basic block of IR.
+* The IR can be found under [`src/frontend/ir/`](../src/dynarmic/ir/).
+* Optimizations can be found under [`src/ir_opt/`](../src/dynarmic/ir/opt/).
+* Emission is done by `EmitX64` which can be found in [`src/dynarmic/backend/x64/emit_x64.{h,cpp}`](../src/dynarmic/backend/x64/).
+* Execution is performed by calling `BlockOfCode::RunCode` in [`src/dynarmic/backend/x64/block_of_code.{h,cpp}`](../src/dynarmic/backend/x64/).
+
+## Decoder
+
+The decoder is a double dispatch decoder. Each instruction is represented by a line in the relevant
+instruction table. Here is an example line from [`arm.h`](../src/dynarmic/frontend/A32/decoder/arm.h):
+
+ INST(&V::arm_ADC_imm, "ADC (imm)", "cccc0010101Snnnnddddrrrrvvvvvvvv")
+
+(Details on this instruction can be found in section A8.8.1 of the ARMv7-A manual. This is encoding A1.)
+
+The first argument to INST is the member function to call on the visitor. The second argument is a user-readable
+instruction name. The third argument is a bit-representation of the instruction.
+
+### Instruction Bit-Representation
+
+Each character in the bitstring represents a bit. A `0` means that that bitposition **must** contain a zero. A `1`
+means that that bitposition **must** contain a one. A `-` means we don't care about the value at that bitposition.
+A string of the same character represents a field. In the above example, the first four bits `cccc` represent the
+four-bit-long cond field of the ARM Add with Carry (immediate) instruction.
+
+The visitor would have to have a function named `arm_ADC_imm` with 6 arguments, one for each field (`cccc`, `S`,
+`nnnn`, `dddd`, `rrrr`, `vvvvvvvv`). If there is a mismatch of field number with argument number, a compile-time
+error results.
+
+## Translator
+
+The translator is a visitor that uses the decoder to decode instructions. The translator generates IR code with the
+help of the [`IREmitter` class](../src/dynarmic/ir/ir_emitter.h). An example of a translation function follows:
+
+ bool ArmTranslatorVisitor::arm_ADC_imm(Cond cond, bool S, Reg n, Reg d, int rotate, Imm8 imm8) {
+ u32 imm32 = ArmExpandImm(rotate, imm8);
+
+ // ADC{S}<c> <Rd>, <Rn>, #<imm>
+
+ if (ConditionPassed(cond)) {
+ auto result = ir.AddWithCarry(ir.GetRegister(n), ir.Imm32(imm32), ir.GetCFlag());
+
+ if (d == Reg::PC) {
+ ASSERT(!S);
+ ir.ALUWritePC(result.result);
+ ir.SetTerm(IR::Term::ReturnToDispatch{});
+ return false;
+ }
+
+ ir.SetRegister(d, result.result);
+ if (S) {
+ ir.SetNFlag(ir.MostSignificantBit(result.result));
+ ir.SetZFlag(ir.IsZero(result.result));
+ ir.SetCFlag(result.carry);
+ ir.SetVFlag(result.overflow);
+ }
+ }
+
+ return true;
+ }
+
+where `ir` is an instance of the `IRBuilder` class. Each member function of the `IRBuilder` class constructs
+an IR microinstruction.
+
+## Intermediate Representation
+
+Dynarmic uses an ordered SSA intermediate representation. It is very vaguely similar to those found in other
+similar projects like redream, nucleus, and xenia. Major differences are: (1) the abundance of context
+microinstructions whereas those projects generally only have two (`load_context`/`store_context`), (2) the
+explicit handling of flags as their own values, and (3) very different basic block edge handling.
+
+The intention of the context microinstructions and explicit flag handling is to allow for future optimizations. The
+differences in the way edges are handled are a quirk of the current implementation and dynarmic will likely add a
+function analyser in the medium-term future.
+
+Dynarmic's intermediate representation is typed. Each microinstruction may take zero or more arguments and may
+return zero or more arguments. A subset of the microinstructions available is documented below.
+
+A complete list of microinstructions can be found in [src/dynarmic/ir/opcodes.inc](../src/dynarmic/ir/opcodes.inc).
+
+The below lists some commonly used microinstructions.
+
+### Immediate: Imm{U1,U8,U32,RegRef}
+
+ <u1> ImmU1(u1 value)
+ <u8> ImmU8(u8 value)
+ <u32> ImmU32(u32 value)
+ <RegRef> ImmRegRef(Arm::Reg gpr)
+
+These instructions take a `bool`, `u8` or `u32` value and wraps it up in an IR node so that they can be used
+by the IR.
+
+### Context: {Get,Set}Register
+
+ <u32> GetRegister(<RegRef> reg)
+ <void> SetRegister(<RegRef> reg, <u32> value)
+
+Gets and sets `JitState::Reg[reg]`. Note that `SetRegister(Arm::Reg::R15, _)` is disallowed by IRBuilder.
+Use `{ALU,BX}WritePC` instead.
+
+Note that sequences like `SetRegister(R4, _)` followed by `GetRegister(R4)` are
+optimized away.
+
+### Context: {Get,Set}{N,Z,C,V}Flag
+
+ <u1> GetNFlag()
+ <void> SetNFlag(<u1> value)
+ <u1> GetZFlag()
+ <void> SetZFlag(<u1> value)
+ <u1> GetCFlag()
+ <void> SetCFlag(<u1> value)
+ <u1> GetVFlag()
+ <void> SetVFlag(<u1> value)
+
+Gets and sets bits in `JitState::Cpsr`. Similarly to registers redundant get/sets are optimized away.
+
+### Context: BXWritePC
+
+ <void> BXWritePC(<u32> value)
+
+This should probably be the last instruction in a translation block unless you're doing something fancy.
+
+This microinstruction sets R15 and CPSR.T as appropriate.
+
+### Callback: CallSupervisor
+
+ <void> CallSupervisor(<u32> svc_imm32)
+
+This should probably be the last instruction in a translation block unless you're doing something fancy.
+
+### Calculation: LastSignificant{Half,Byte}
+
+ <u16> LeastSignificantHalf(<u32> value)
+ <u8> LeastSignificantByte(<u32> value)
+
+Extract a u16 and u8 respectively from a u32.
+
+### Calculation: MostSignificantBit, IsZero
+
+ <u1> MostSignificantBit(<u32> value)
+ <u1> IsZero(<u32> value)
+
+These are used to implement ARM flags N and Z. These can often be optimized away by the backend into a host flag read.
+
+### Calculation: LogicalShiftLeft
+
+ (<u32> result, <u1> carry_out) LogicalShiftLeft(<u32> operand, <u8> shift_amount, <u1> carry_in)
+
+Pseudocode:
+
+ if shift_amount == 0:
+ return (operand, carry_in)
+
+ x = operand * (2 ** shift_amount)
+ result = Bits<31,0>(x)
+ carry_out = Bit<32>(x)
+
+ return (result, carry_out)
+
+This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SHL` does on x64).
+
+### Calculation: LogicalShiftRight
+
+ (<u32> result, <u1> carry_out) LogicalShiftLeft(<u32> operand, <u8> shift_amount, <u1> carry_in)
+
+Pseudocode:
+
+ if shift_amount == 0:
+ return (operand, carry_in)
+
+ x = ZeroExtend(operand, from_size: 32, to_size: shift_amount+32)
+ result = Bits<shift_amount+31,shift_amount>(x)
+ carry_out = Bit<shift_amount-1>(x)
+
+ return (result, carry_out)
+
+This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SHR` does on x64).
+
+### Calculation: ArithmeticShiftRight
+
+ (<u32> result, <u1> carry_out) ArithmeticShiftRight(<u32> operand, <u8> shift_amount, <u1> carry_in)
+
+Pseudocode:
+
+ if shift_amount == 0:
+ return (operand, carry_in)
+
+ x = SignExtend(operand, from_size: 32, to_size: shift_amount+32)
+ result = Bits<shift_amount+31,shift_amount>(x)
+ carry_out = Bit<shift_amount-1>(x)
+
+ return (result, carry_out)
+
+This follows ARM semantics. Note `shift_amount` is not masked to 5 bits (like `SAR` does on x64).
+
+### Calcuation: RotateRight
+
+ (<u32> result, <u1> carry_out) RotateRight(<u32> operand, <u8> shift_amount, <u1> carry_in)
+
+Pseudocode:
+
+ if shift_amount == 0:
+ return (operand, carry_in)
+
+ shift_amount %= 32
+ result = (operand << shift_amount) | (operand >> (32 - shift_amount))
+ carry_out = Bit<31>(result)
+
+ return (result, carry_out)
+
+### Calculation: AddWithCarry
+
+ (<u32> result, <u1> carry_out, <u1> overflow) AddWithCarry(<u32> a, <u32> b, <u1> carry_in)
+
+a + b + carry_in
+
+### Calculation: SubWithCarry
+
+ (<u32> result, <u1> carry_out, <u1> overflow) SubWithCarry(<u32> a, <u32> b, <u1> carry_in)
+
+This has equivalent semantics to `AddWithCarry(a, Not(b), carry_in)`.
+
+a - b - !carry_in
+
+### Calculation: And
+
+ <u32> And(<u32> a, <u32> b)
+
+### Calculation: Eor
+
+ <u32> Eor(<u32> a, <u32> b)
+
+Exclusive OR (i.e.: XOR)
+
+### Calculation: Or
+
+ <u32> Or(<u32> a, <u32> b)
+
+### Calculation: Not
+
+ <u32> Not(<u32> value)
+
+### Callback: {Read,Write}Memory{8,16,32,64}
+
+ <u8> ReadMemory8(<u32> vaddr)
+ <u8> ReadMemory16(<u32> vaddr)
+ <u8> ReadMemory32(<u32> vaddr)
+ <u8> ReadMemory64(<u32> vaddr)
+ <void> WriteMemory8(<u32> vaddr, <u8> value_to_store)
+ <void> WriteMemory16(<u32> vaddr, <u16> value_to_store)
+ <void> WriteMemory32(<u32> vaddr, <u32> value_to_store)
+ <void> WriteMemory64(<u32> vaddr, <u64> value_to_store)
+
+Memory access.
+
+### Terminal: Interpret
+
+ SetTerm(IR::Term::Interpret{next})
+
+This terminal instruction calls the interpreter, starting at `next`.
+The interpreter must interpret exactly one instruction.
+
+### Terminal: ReturnToDispatch
+
+ SetTerm(IR::Term::ReturnToDispatch{})
+
+This terminal instruction returns control to the dispatcher.
+The dispatcher will use the value in R15 to determine what comes next.
+
+### Terminal: LinkBlock
+
+ SetTerm(IR::Term::LinkBlock{next})
+
+This terminal instruction jumps to the basic block described by `next` if we have enough
+cycles remaining. If we do not have enough cycles remaining, we return to the
+dispatcher, which will return control to the host.
+
+### Terminal: PopRSBHint
+
+ SetTerm(IR::Term::PopRSBHint{})
+
+This terminal instruction checks the top of the Return Stack Buffer against R15.
+If RSB lookup fails, control is returned to the dispatcher.
+This is an optimization for faster function calls. A backend that doesn't support
+this optimization or doesn't have a RSB may choose to implement this exactly as
+ReturnToDispatch.
+
+### Terminal: If
+
+ SetTerm(IR::Term::If{cond, term_then, term_else})
+
+This terminal instruction conditionally executes one terminal or another depending
+on the run-time state of the ARM flags.