aboutsummaryrefslogtreecommitdiff
path: root/src/Ryujinx.Graphics.Gpu/Memory/BufferCache.cs
blob: 66d2cdb6268eb96cca57de2f452ed014acba7c47 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
using Ryujinx.Graphics.GAL;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;

namespace Ryujinx.Graphics.Gpu.Memory
{
    /// <summary>
    /// Buffer cache.
    /// </summary>
    class BufferCache : IDisposable
    {
        /// <summary>
        /// Initial size for the array holding overlaps.
        /// </summary>
        public const int OverlapsBufferInitialCapacity = 10;

        /// <summary>
        /// Maximum size that an array holding overlaps may have after trimming.
        /// </summary>
        public const int OverlapsBufferMaxCapacity = 10000;

        private const ulong BufferAlignmentSize = 0x1000;
        private const ulong BufferAlignmentMask = BufferAlignmentSize - 1;

        /// <summary>
        /// Alignment required for sparse buffer mappings.
        /// </summary>
        public const ulong SparseBufferAlignmentSize = 0x10000;

        private const ulong MaxDynamicGrowthSize = 0x100000;

        private readonly GpuContext _context;
        private readonly PhysicalMemory _physicalMemory;

        /// <remarks>
        /// Only modified from the GPU thread. Must lock for add/remove.
        /// Must lock for any access from other threads.
        /// </remarks>
        private readonly RangeList<Buffer> _buffers;
        private readonly MultiRangeList<MultiRangeBuffer> _multiRangeBuffers;

        private Buffer[] _bufferOverlaps;

        private readonly Dictionary<ulong, BufferCacheEntry> _dirtyCache;
        private readonly Dictionary<ulong, BufferCacheEntry> _modifiedCache;
        private bool _pruneCaches;
        private int _virtualModifiedSequenceNumber;

        public event Action NotifyBuffersModified;

        /// <summary>
        /// Creates a new instance of the buffer manager.
        /// </summary>
        /// <param name="context">The GPU context that the buffer manager belongs to</param>
        /// <param name="physicalMemory">Physical memory where the cached buffers are mapped</param>
        public BufferCache(GpuContext context, PhysicalMemory physicalMemory)
        {
            _context = context;
            _physicalMemory = physicalMemory;

            _buffers = new RangeList<Buffer>();
            _multiRangeBuffers = new MultiRangeList<MultiRangeBuffer>();

            _bufferOverlaps = new Buffer[OverlapsBufferInitialCapacity];

            _dirtyCache = new Dictionary<ulong, BufferCacheEntry>();

            // There are a lot more entries on the modified cache, so it is separate from the one for ForceDirty.
            _modifiedCache = new Dictionary<ulong, BufferCacheEntry>();
        }

        /// <summary>
        /// Handles removal of buffers written to a memory region being unmapped.
        /// </summary>
        /// <param name="sender">Sender object</param>
        /// <param name="e">Event arguments</param>
        public void MemoryUnmappedHandler(object sender, UnmapEventArgs e)
        {
            Buffer[] overlaps = new Buffer[10];
            int overlapCount;

            MultiRange range = ((MemoryManager)sender).GetPhysicalRegions(e.Address, e.Size);

            for (int index = 0; index < range.Count; index++)
            {
                MemoryRange subRange = range.GetSubRange(index);

                lock (_buffers)
                {
                    overlapCount = _buffers.FindOverlaps(subRange.Address, subRange.Size, ref overlaps);
                }

                for (int i = 0; i < overlapCount; i++)
                {
                    overlaps[i].Unmapped(subRange.Address, subRange.Size);
                }
            }
        }

        /// <summary>
        /// Performs address translation of the GPU virtual address, and creates a
        /// new buffer, if needed, for the specified contiguous range.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">Start GPU virtual address of the buffer</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <returns>Contiguous physical range of the buffer, after address translation</returns>
        public MultiRange TranslateAndCreateBuffer(MemoryManager memoryManager, ulong gpuVa, ulong size, BufferStage stage)
        {
            if (gpuVa == 0)
            {
                return new MultiRange(MemoryManager.PteUnmapped, size);
            }

            ulong address = memoryManager.Translate(gpuVa);

            if (address != MemoryManager.PteUnmapped)
            {
                CreateBuffer(address, size, stage);
            }

            return new MultiRange(address, size);
        }

        /// <summary>
        /// Performs address translation of the GPU virtual address, and creates
        /// new physical and virtual buffers, if needed, for the specified range.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">Start GPU virtual address of the buffer</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <returns>Physical ranges of the buffer, after address translation</returns>
        public MultiRange TranslateAndCreateMultiBuffers(MemoryManager memoryManager, ulong gpuVa, ulong size, BufferStage stage)
        {
            if (gpuVa == 0)
            {
                return new MultiRange(MemoryManager.PteUnmapped, size);
            }

            // Fast path not taken for non-contiguous ranges,
            // since multi-range buffers are not coalesced, so a buffer that covers
            // the entire cached range might not actually exist.
            if (memoryManager.VirtualRangeCache.TryGetOrAddRange(gpuVa, size, out MultiRange range) &&
                range.Count == 1)
            {
                return range;
            }

            CreateBuffer(range, stage);

            return range;
        }

        /// <summary>
        /// Performs address translation of the GPU virtual address, and creates
        /// new physical buffers, if needed, for the specified range.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">Start GPU virtual address of the buffer</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <returns>Physical ranges of the buffer, after address translation</returns>
        public MultiRange TranslateAndCreateMultiBuffersPhysicalOnly(MemoryManager memoryManager, ulong gpuVa, ulong size, BufferStage stage)
        {
            if (gpuVa == 0)
            {
                return new MultiRange(MemoryManager.PteUnmapped, size);
            }

            // Fast path not taken for non-contiguous ranges,
            // since multi-range buffers are not coalesced, so a buffer that covers
            // the entire cached range might not actually exist.
            if (memoryManager.VirtualRangeCache.TryGetOrAddRange(gpuVa, size, out MultiRange range) &&
                range.Count == 1)
            {
                return range;
            }

            for (int i = 0; i < range.Count; i++)
            {
                MemoryRange subRange = range.GetSubRange(i);

                if (subRange.Address != MemoryManager.PteUnmapped)
                {
                    if (range.Count > 1)
                    {
                        CreateBuffer(subRange.Address, subRange.Size, stage, SparseBufferAlignmentSize);
                    }
                    else
                    {
                        CreateBuffer(subRange.Address, subRange.Size, stage);
                    }
                }
            }

            return range;
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if it does not yet exist.
        /// This can be used to ensure the existance of a buffer.
        /// </summary>
        /// <param name="range">Physical ranges of memory where the buffer data is located</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        public void CreateBuffer(MultiRange range, BufferStage stage)
        {
            if (range.Count > 1)
            {
                CreateMultiRangeBuffer(range, stage);
            }
            else
            {
                MemoryRange subRange = range.GetSubRange(0);

                if (subRange.Address != MemoryManager.PteUnmapped)
                {
                    CreateBuffer(subRange.Address, subRange.Size, stage);
                }
            }
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if it does not yet exist.
        /// This can be used to ensure the existance of a buffer.
        /// </summary>
        /// <param name="address">Address of the buffer in memory</param>
        /// <param name="size">Size of the buffer in bytes</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        public void CreateBuffer(ulong address, ulong size, BufferStage stage)
        {
            ulong endAddress = address + size;

            ulong alignedAddress = address & ~BufferAlignmentMask;
            ulong alignedEndAddress = (endAddress + BufferAlignmentMask) & ~BufferAlignmentMask;

            // The buffer must have the size of at least one page.
            if (alignedEndAddress == alignedAddress)
            {
                alignedEndAddress += BufferAlignmentSize;
            }

            CreateBufferAligned(alignedAddress, alignedEndAddress - alignedAddress, stage);
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if it does not yet exist.
        /// This can be used to ensure the existance of a buffer.
        /// </summary>
        /// <param name="address">Address of the buffer in memory</param>
        /// <param name="size">Size of the buffer in bytes</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <param name="alignment">Alignment of the start address of the buffer in bytes</param>
        public void CreateBuffer(ulong address, ulong size, BufferStage stage, ulong alignment)
        {
            ulong alignmentMask = alignment - 1;
            ulong pageAlignmentMask = BufferAlignmentMask;
            ulong endAddress = address + size;

            ulong alignedAddress = address & ~alignmentMask;
            ulong alignedEndAddress = (endAddress + pageAlignmentMask) & ~pageAlignmentMask;

            // The buffer must have the size of at least one page.
            if (alignedEndAddress == alignedAddress)
            {
                alignedEndAddress += pageAlignmentMask;
            }

            CreateBufferAligned(alignedAddress, alignedEndAddress - alignedAddress, stage, alignment);
        }

        /// <summary>
        /// Creates a buffer for a memory region composed of multiple physical ranges,
        /// if it does not exist yet.
        /// </summary>
        /// <param name="range">Physical ranges of memory</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        private void CreateMultiRangeBuffer(MultiRange range, BufferStage stage)
        {
            // Ensure all non-contiguous buffer we might use are sparse aligned.
            for (int i = 0; i < range.Count; i++)
            {
                MemoryRange subRange = range.GetSubRange(i);

                if (subRange.Address != MemoryManager.PteUnmapped)
                {
                    CreateBuffer(subRange.Address, subRange.Size, stage, SparseBufferAlignmentSize);
                }
            }

            // Create sparse buffer.
            MultiRangeBuffer[] overlaps = new MultiRangeBuffer[10];

            int overlapCount = _multiRangeBuffers.FindOverlaps(range, ref overlaps);

            for (int index = 0; index < overlapCount; index++)
            {
                if (overlaps[index].Range.Contains(range))
                {
                    return;
                }
            }

            for (int index = 0; index < overlapCount; index++)
            {
                if (range.Contains(overlaps[index].Range))
                {
                    _multiRangeBuffers.Remove(overlaps[index]);
                    overlaps[index].Dispose();
                }
            }

            MultiRangeBuffer multiRangeBuffer;

            MemoryRange[] alignedSubRanges = new MemoryRange[range.Count];

            ulong alignmentMask = SparseBufferAlignmentSize - 1;

            if (_context.Capabilities.SupportsSparseBuffer)
            {
                BufferRange[] storages = new BufferRange[range.Count];

                for (int i = 0; i < range.Count; i++)
                {
                    MemoryRange subRange = range.GetSubRange(i);

                    if (subRange.Address != MemoryManager.PteUnmapped)
                    {
                        ulong endAddress = subRange.Address + subRange.Size;

                        ulong alignedAddress = subRange.Address & ~alignmentMask;
                        ulong alignedEndAddress = (endAddress + alignmentMask) & ~alignmentMask;
                        ulong alignedSize = alignedEndAddress - alignedAddress;

                        Buffer buffer = _buffers.FindFirstOverlap(alignedAddress, alignedSize);
                        BufferRange bufferRange = buffer.GetRange(alignedAddress, alignedSize, false);

                        alignedSubRanges[i] = new MemoryRange(alignedAddress, alignedSize);
                        storages[i] = bufferRange;
                    }
                    else
                    {
                        ulong alignedSize = (subRange.Size + alignmentMask) & ~alignmentMask;

                        alignedSubRanges[i] = new MemoryRange(MemoryManager.PteUnmapped, alignedSize);
                        storages[i] = new BufferRange(BufferHandle.Null, 0, (int)alignedSize);
                    }
                }

                multiRangeBuffer = new(_context, new MultiRange(alignedSubRanges), storages);
            }
            else
            {
                for (int i = 0; i < range.Count; i++)
                {
                    MemoryRange subRange = range.GetSubRange(i);

                    if (subRange.Address != MemoryManager.PteUnmapped)
                    {
                        ulong endAddress = subRange.Address + subRange.Size;

                        ulong alignedAddress = subRange.Address & ~alignmentMask;
                        ulong alignedEndAddress = (endAddress + alignmentMask) & ~alignmentMask;
                        ulong alignedSize = alignedEndAddress - alignedAddress;

                        alignedSubRanges[i] = new MemoryRange(alignedAddress, alignedSize);
                    }
                    else
                    {
                        ulong alignedSize = (subRange.Size + alignmentMask) & ~alignmentMask;

                        alignedSubRanges[i] = new MemoryRange(MemoryManager.PteUnmapped, alignedSize);
                    }
                }

                multiRangeBuffer = new(_context, new MultiRange(alignedSubRanges));

                UpdateVirtualBufferDependencies(multiRangeBuffer);
            }

            _multiRangeBuffers.Add(multiRangeBuffer);
        }

        /// <summary>
        /// Adds two-way dependencies to all physical buffers contained within a given virtual buffer.
        /// </summary>
        /// <param name="virtualBuffer">Virtual buffer to have dependencies added</param>
        private void UpdateVirtualBufferDependencies(MultiRangeBuffer virtualBuffer)
        {
            virtualBuffer.ClearPhysicalDependencies();

            ulong dstOffset = 0;

            HashSet<Buffer> physicalBuffers = new();

            for (int i = 0; i < virtualBuffer.Range.Count; i++)
            {
                MemoryRange subRange = virtualBuffer.Range.GetSubRange(i);

                if (subRange.Address != MemoryManager.PteUnmapped)
                {
                    Buffer buffer = _buffers.FindFirstOverlap(subRange.Address, subRange.Size);

                    virtualBuffer.AddPhysicalDependency(buffer, subRange.Address, dstOffset, subRange.Size);
                    physicalBuffers.Add(buffer);
                }

                dstOffset += subRange.Size;
            }

            foreach (var buffer in physicalBuffers)
            {
                buffer.CopyToDependantVirtualBuffer(virtualBuffer);
            }
        }

        /// <summary>
        /// Performs address translation of the GPU virtual address, and attempts to force
        /// the buffer in the region as dirty.
        /// The buffer lookup for this function is cached in a dictionary for quick access, which
        /// accelerates common UBO updates.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">Start GPU virtual address of the buffer</param>
        /// <param name="size">Size in bytes of the buffer</param>
        public void ForceDirty(MemoryManager memoryManager, ulong gpuVa, ulong size)
        {
            if (_pruneCaches)
            {
                Prune();
            }

            if (!_dirtyCache.TryGetValue(gpuVa, out BufferCacheEntry result) ||
                result.EndGpuAddress < gpuVa + size ||
                result.UnmappedSequence != result.Buffer.UnmappedSequence)
            {
                MultiRange range = TranslateAndCreateBuffer(memoryManager, gpuVa, size, BufferStage.Internal);
                ulong address = range.GetSubRange(0).Address;
                result = new BufferCacheEntry(address, gpuVa, GetBuffer(address, size, BufferStage.Internal));

                _dirtyCache[gpuVa] = result;
            }

            result.Buffer.ForceDirty(result.Address, size);
        }

        /// <summary>
        /// Checks if the given buffer range has been GPU modifed.
        /// </summary>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">Start GPU virtual address of the buffer</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <returns>True if modified, false otherwise</returns>
        public bool CheckModified(MemoryManager memoryManager, ulong gpuVa, ulong size, out ulong outAddr)
        {
            if (_pruneCaches)
            {
                Prune();
            }

            // Align the address to avoid creating too many entries on the quick lookup dictionary.
            ulong mask = BufferAlignmentMask;
            ulong alignedGpuVa = gpuVa & (~mask);
            ulong alignedEndGpuVa = (gpuVa + size + mask) & (~mask);

            size = alignedEndGpuVa - alignedGpuVa;

            if (!_modifiedCache.TryGetValue(alignedGpuVa, out BufferCacheEntry result) ||
                result.EndGpuAddress < alignedEndGpuVa ||
                result.UnmappedSequence != result.Buffer.UnmappedSequence)
            {
                MultiRange range = TranslateAndCreateBuffer(memoryManager, alignedGpuVa, size, BufferStage.None);
                ulong address = range.GetSubRange(0).Address;
                result = new BufferCacheEntry(address, alignedGpuVa, GetBuffer(address, size, BufferStage.None));

                _modifiedCache[alignedGpuVa] = result;
            }

            outAddr = result.Address | (gpuVa & mask);

            return result.Buffer.IsModified(result.Address, size);
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if needed.
        /// If a buffer where this range can be fully contained already exists,
        /// then the creation of a new buffer is not necessary.
        /// </summary>
        /// <param name="address">Address of the buffer in guest memory</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        private void CreateBufferAligned(ulong address, ulong size, BufferStage stage)
        {
            Buffer[] overlaps = _bufferOverlaps;
            int overlapsCount = _buffers.FindOverlapsNonOverlapping(address, size, ref overlaps);

            if (overlapsCount != 0)
            {
                // The buffer already exists. We can just return the existing buffer
                // if the buffer we need is fully contained inside the overlapping buffer.
                // Otherwise, we must delete the overlapping buffers and create a bigger buffer
                // that fits all the data we need. We also need to copy the contents from the
                // old buffer(s) to the new buffer.

                ulong endAddress = address + size;
                Buffer overlap0 = overlaps[0];

                if (overlap0.Address > address || overlap0.EndAddress < endAddress)
                {
                    bool anySparseCompatible = false;

                    // Check if the following conditions are met:
                    // - We have a single overlap.
                    // - The overlap starts at or before the requested range. That is, the overlap happens at the end.
                    // - The size delta between the new, merged buffer and the old one is of at most 2 pages.
                    // In this case, we attempt to extend the buffer further than the requested range,
                    // this can potentially avoid future resizes if the application keeps using overlapping
                    // sequential memory.
                    // Allowing for 2 pages (rather than just one) is necessary to catch cases where the
                    // range crosses a page, and after alignment, ends having a size of 2 pages.
                    if (overlapsCount == 1 &&
                        address >= overlap0.Address &&
                        endAddress - overlap0.EndAddress <= BufferAlignmentSize * 2)
                    {
                        // Try to grow the buffer by 1.5x of its current size.
                        // This improves performance in the cases where the buffer is resized often by small amounts.
                        ulong existingSize = overlap0.Size;
                        ulong growthSize = (existingSize + Math.Min(existingSize >> 1, MaxDynamicGrowthSize)) & ~BufferAlignmentMask;

                        size = Math.Max(size, growthSize);
                        endAddress = address + size;

                        overlapsCount = _buffers.FindOverlapsNonOverlapping(address, size, ref overlaps);
                    }

                    for (int index = 0; index < overlapsCount; index++)
                    {
                        Buffer buffer = overlaps[index];

                        anySparseCompatible |= buffer.SparseCompatible;

                        address = Math.Min(address, buffer.Address);
                        endAddress = Math.Max(endAddress, buffer.EndAddress);

                        lock (_buffers)
                        {
                            _buffers.Remove(buffer);
                        }
                    }

                    ulong newSize = endAddress - address;

                    CreateBufferAligned(address, newSize, stage, anySparseCompatible, overlaps, overlapsCount);
                }
            }
            else
            {
                // No overlap, just create a new buffer.
                Buffer buffer = new(_context, _physicalMemory, address, size, stage, sparseCompatible: false);

                lock (_buffers)
                {
                    _buffers.Add(buffer);
                }
            }

            ShrinkOverlapsBufferIfNeeded();
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if needed.
        /// If a buffer where this range can be fully contained already exists,
        /// then the creation of a new buffer is not necessary.
        /// </summary>
        /// <param name="address">Address of the buffer in guest memory</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <param name="alignment">Alignment of the start address of the buffer</param>
        private void CreateBufferAligned(ulong address, ulong size, BufferStage stage, ulong alignment)
        {
            Buffer[] overlaps = _bufferOverlaps;
            int overlapsCount = _buffers.FindOverlapsNonOverlapping(address, size, ref overlaps);
            bool sparseAligned = alignment >= SparseBufferAlignmentSize;

            if (overlapsCount != 0)
            {
                // If the buffer already exists, make sure if covers the entire range,
                // and make sure it is properly aligned, otherwise sparse mapping may fail.

                ulong endAddress = address + size;
                Buffer overlap0 = overlaps[0];

                if (overlap0.Address > address ||
                    overlap0.EndAddress < endAddress ||
                    (overlap0.Address & (alignment - 1)) != 0 ||
                    (!overlap0.SparseCompatible && sparseAligned))
                {
                    // We need to make sure the new buffer is properly aligned.
                    // However, after the range is aligned, it is possible that it
                    // overlaps more buffers, so try again after each extension
                    // and ensure we cover all overlaps.

                    int oldOverlapsCount;

                    do
                    {
                        for (int index = 0; index < overlapsCount; index++)
                        {
                            Buffer buffer = overlaps[index];

                            address = Math.Min(address, buffer.Address);
                            endAddress = Math.Max(endAddress, buffer.EndAddress);
                        }

                        address &= ~(alignment - 1);

                        oldOverlapsCount = overlapsCount;
                        overlapsCount = _buffers.FindOverlapsNonOverlapping(address, endAddress - address, ref overlaps);
                    }
                    while (oldOverlapsCount != overlapsCount);

                    lock (_buffers)
                    {
                        for (int index = 0; index < overlapsCount; index++)
                        {
                            _buffers.Remove(overlaps[index]);
                        }
                    }

                    ulong newSize = endAddress - address;

                    CreateBufferAligned(address, newSize, stage, sparseAligned, overlaps, overlapsCount);
                }
            }
            else
            {
                // No overlap, just create a new buffer.
                Buffer buffer = new(_context, _physicalMemory, address, size, stage, sparseAligned);

                lock (_buffers)
                {
                    _buffers.Add(buffer);
                }
            }

            ShrinkOverlapsBufferIfNeeded();
        }

        /// <summary>
        /// Creates a new buffer for the specified range, if needed.
        /// If a buffer where this range can be fully contained already exists,
        /// then the creation of a new buffer is not necessary.
        /// </summary>
        /// <param name="address">Address of the buffer in guest memory</param>
        /// <param name="size">Size in bytes of the buffer</param>
        /// <param name="stage">The type of usage that created the buffer</param>
        /// <param name="sparseCompatible">Indicates if the buffer can be used in a sparse buffer mapping</param>
        /// <param name="overlaps">Buffers overlapping the range</param>
        /// <param name="overlapsCount">Total of overlaps</param>
        private void CreateBufferAligned(ulong address, ulong size, BufferStage stage, bool sparseCompatible, Buffer[] overlaps, int overlapsCount)
        {
            Buffer newBuffer = new Buffer(_context, _physicalMemory, address, size, stage, sparseCompatible, overlaps.Take(overlapsCount));

            lock (_buffers)
            {
                _buffers.Add(newBuffer);
            }

            for (int index = 0; index < overlapsCount; index++)
            {
                Buffer buffer = overlaps[index];

                int dstOffset = (int)(buffer.Address - newBuffer.Address);

                buffer.CopyTo(newBuffer, dstOffset);
                newBuffer.InheritModifiedRanges(buffer);

                buffer.DecrementReferenceCount();
            }

            newBuffer.SynchronizeMemory(address, size);

            // Existing buffers were modified, we need to rebind everything.
            NotifyBuffersModified?.Invoke();

            RecreateMultiRangeBuffers(address, size);
        }

        /// <summary>
        /// Recreates all the multi-range buffers that overlaps a given physical memory range.
        /// </summary>
        /// <param name="address">Start address of the range</param>
        /// <param name="size">Size of the range in bytes</param>
        private void RecreateMultiRangeBuffers(ulong address, ulong size)
        {
            if ((address & (SparseBufferAlignmentSize - 1)) != 0 || (size & (SparseBufferAlignmentSize - 1)) != 0)
            {
                return;
            }

            MultiRangeBuffer[] overlaps = new MultiRangeBuffer[10];

            int overlapCount = _multiRangeBuffers.FindOverlaps(address, size, ref overlaps);

            for (int index = 0; index < overlapCount; index++)
            {
                _multiRangeBuffers.Remove(overlaps[index]);
                overlaps[index].Dispose();
            }

            for (int index = 0; index < overlapCount; index++)
            {
                CreateMultiRangeBuffer(overlaps[index].Range, BufferStage.None);
            }
        }

        /// <summary>
        /// Resizes the temporary buffer used for range list intersection results, if it has grown too much.
        /// </summary>
        private void ShrinkOverlapsBufferIfNeeded()
        {
            if (_bufferOverlaps.Length > OverlapsBufferMaxCapacity)
            {
                Array.Resize(ref _bufferOverlaps, OverlapsBufferMaxCapacity);
            }
        }

        /// <summary>
        /// Copy a buffer data from a given address to another.
        /// </summary>
        /// <remarks>
        /// This does a GPU side copy.
        /// </remarks>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="srcVa">GPU virtual address of the copy source</param>
        /// <param name="dstVa">GPU virtual address of the copy destination</param>
        /// <param name="size">Size in bytes of the copy</param>
        public void CopyBuffer(MemoryManager memoryManager, ulong srcVa, ulong dstVa, ulong size)
        {
            MultiRange srcRange = TranslateAndCreateMultiBuffersPhysicalOnly(memoryManager, srcVa, size, BufferStage.Copy);
            MultiRange dstRange = TranslateAndCreateMultiBuffersPhysicalOnly(memoryManager, dstVa, size, BufferStage.Copy);

            if (srcRange.Count == 1 && dstRange.Count == 1)
            {
                CopyBufferSingleRange(memoryManager, srcRange.GetSubRange(0).Address, dstRange.GetSubRange(0).Address, size);
            }
            else
            {
                ulong copiedSize = 0;
                ulong srcOffset = 0;
                ulong dstOffset = 0;
                int srcRangeIndex = 0;
                int dstRangeIndex = 0;

                while (copiedSize < size)
                {
                    if (srcRange.GetSubRange(srcRangeIndex).Size == srcOffset)
                    {
                        srcRangeIndex++;
                        srcOffset = 0;
                    }

                    if (dstRange.GetSubRange(dstRangeIndex).Size == dstOffset)
                    {
                        dstRangeIndex++;
                        dstOffset = 0;
                    }

                    MemoryRange srcSubRange = srcRange.GetSubRange(srcRangeIndex);
                    MemoryRange dstSubRange = dstRange.GetSubRange(dstRangeIndex);

                    ulong srcSize = srcSubRange.Size - srcOffset;
                    ulong dstSize = dstSubRange.Size - dstOffset;
                    ulong copySize = Math.Min(srcSize, dstSize);

                    CopyBufferSingleRange(memoryManager, srcSubRange.Address + srcOffset, dstSubRange.Address + dstOffset, copySize);

                    srcOffset += copySize;
                    dstOffset += copySize;
                    copiedSize += copySize;
                }
            }
        }

        /// <summary>
        /// Copy a buffer data from a given address to another.
        /// </summary>
        /// <remarks>
        /// This does a GPU side copy.
        /// </remarks>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="srcAddress">Physical address of the copy source</param>
        /// <param name="dstAddress">Physical address of the copy destination</param>
        /// <param name="size">Size in bytes of the copy</param>
        private void CopyBufferSingleRange(MemoryManager memoryManager, ulong srcAddress, ulong dstAddress, ulong size)
        {
            Buffer srcBuffer = GetBuffer(srcAddress, size, BufferStage.Copy);
            Buffer dstBuffer = GetBuffer(dstAddress, size, BufferStage.Copy);

            int srcOffset = (int)(srcAddress - srcBuffer.Address);
            int dstOffset = (int)(dstAddress - dstBuffer.Address);

            _context.Renderer.Pipeline.CopyBuffer(
                srcBuffer.Handle,
                dstBuffer.Handle,
                srcOffset,
                dstOffset,
                (int)size);

            if (srcBuffer.IsModified(srcAddress, size))
            {
                dstBuffer.SignalModified(dstAddress, size, BufferStage.Copy);
            }
            else
            {
                // Optimization: If the data being copied is already in memory, then copy it directly instead of flushing from GPU.

                dstBuffer.ClearModified(dstAddress, size);
                memoryManager.Physical.WriteTrackedResource(dstAddress, memoryManager.Physical.GetSpan(srcAddress, (int)size), ResourceKind.Buffer);
            }

            dstBuffer.CopyToDependantVirtualBuffers(dstAddress, size);
        }

        /// <summary>
        /// Clears a buffer at a given address with the specified value.
        /// </summary>
        /// <remarks>
        /// Both the address and size must be aligned to 4 bytes.
        /// </remarks>
        /// <param name="memoryManager">GPU memory manager where the buffer is mapped</param>
        /// <param name="gpuVa">GPU virtual address of the region to clear</param>
        /// <param name="size">Number of bytes to clear</param>
        /// <param name="value">Value to be written into the buffer</param>
        public void ClearBuffer(MemoryManager memoryManager, ulong gpuVa, ulong size, uint value)
        {
            MultiRange range = TranslateAndCreateMultiBuffersPhysicalOnly(memoryManager, gpuVa, size, BufferStage.Copy);

            for (int index = 0; index < range.Count; index++)
            {
                MemoryRange subRange = range.GetSubRange(index);
                Buffer buffer = GetBuffer(subRange.Address, subRange.Size, BufferStage.Copy);

                int offset = (int)(subRange.Address - buffer.Address);

                _context.Renderer.Pipeline.ClearBuffer(buffer.Handle, offset, (int)subRange.Size, value);

                memoryManager.Physical.FillTrackedResource(subRange.Address, subRange.Size, value, ResourceKind.Buffer);

                buffer.CopyToDependantVirtualBuffers(subRange.Address, subRange.Size);
            }
        }

        /// <summary>
        /// Gets a buffer sub-range starting at a given memory address, aligned to the next page boundary.
        /// </summary>
        /// <param name="range">Physical regions of memory where the buffer is mapped</param>
        /// <param name="stage">Buffer stage that triggered the access</param>
        /// <param name="write">Whether the buffer will be written to by this use</param>
        /// <returns>The buffer sub-range starting at the given memory address</returns>
        public BufferRange GetBufferRangeAligned(MultiRange range, BufferStage stage, bool write = false)
        {
            if (range.Count > 1)
            {
                return GetBuffer(range, stage, write).GetRange(range);
            }
            else
            {
                MemoryRange subRange = range.GetSubRange(0);
                return GetBuffer(subRange.Address, subRange.Size, stage, write).GetRangeAligned(subRange.Address, subRange.Size, write);
            }
        }

        /// <summary>
        /// Gets a buffer sub-range for a given memory range.
        /// </summary>
        /// <param name="range">Physical regions of memory where the buffer is mapped</param>
        /// <param name="stage">Buffer stage that triggered the access</param>
        /// <param name="write">Whether the buffer will be written to by this use</param>
        /// <returns>The buffer sub-range for the given range</returns>
        public BufferRange GetBufferRange(MultiRange range, BufferStage stage, bool write = false)
        {
            if (range.Count > 1)
            {
                return GetBuffer(range, stage, write).GetRange(range);
            }
            else
            {
                MemoryRange subRange = range.GetSubRange(0);
                return GetBuffer(subRange.Address, subRange.Size, stage, write).GetRange(subRange.Address, subRange.Size, write);
            }
        }

        /// <summary>
        /// Gets a buffer for a given memory range.
        /// A buffer overlapping with the specified range is assumed to already exist on the cache.
        /// </summary>
        /// <param name="range">Physical regions of memory where the buffer is mapped</param>
        /// <param name="stage">Buffer stage that triggered the access</param>
        /// <param name="write">Whether the buffer will be written to by this use</param>
        /// <returns>The buffer where the range is fully contained</returns>
        private MultiRangeBuffer GetBuffer(MultiRange range, BufferStage stage, bool write = false)
        {
            for (int i = 0; i < range.Count; i++)
            {
                MemoryRange subRange = range.GetSubRange(i);

                Buffer subBuffer = _buffers.FindFirstOverlap(subRange.Address, subRange.Size);

                subBuffer.SynchronizeMemory(subRange.Address, subRange.Size);

                if (write)
                {
                    subBuffer.SignalModified(subRange.Address, subRange.Size, stage);
                }
            }

            MultiRangeBuffer[] overlaps = new MultiRangeBuffer[10];

            int overlapCount = _multiRangeBuffers.FindOverlaps(range, ref overlaps);

            MultiRangeBuffer buffer = null;

            for (int i = 0; i < overlapCount; i++)
            {
                if (overlaps[i].Range.Contains(range))
                {
                    buffer = overlaps[i];
                    break;
                }
            }

            if (write && buffer != null && !_context.Capabilities.SupportsSparseBuffer)
            {
                buffer.AddModifiedRegion(range, ++_virtualModifiedSequenceNumber);
            }

            return buffer;
        }

        /// <summary>
        /// Gets a buffer for a given memory range.
        /// A buffer overlapping with the specified range is assumed to already exist on the cache.
        /// </summary>
        /// <param name="address">Start address of the memory range</param>
        /// <param name="size">Size in bytes of the memory range</param>
        /// <param name="stage">Buffer stage that triggered the access</param>
        /// <param name="write">Whether the buffer will be written to by this use</param>
        /// <returns>The buffer where the range is fully contained</returns>
        private Buffer GetBuffer(ulong address, ulong size, BufferStage stage, bool write = false)
        {
            Buffer buffer;

            if (size != 0)
            {
                buffer = _buffers.FindFirstOverlap(address, size);

                buffer.CopyFromDependantVirtualBuffers();
                buffer.SynchronizeMemory(address, size);

                if (write)
                {
                    buffer.SignalModified(address, size, stage);
                }
            }
            else
            {
                buffer = _buffers.FindFirstOverlap(address, 1);
            }

            return buffer;
        }

        /// <summary>
        /// Performs guest to host memory synchronization of a given memory range.
        /// </summary>
        /// <param name="range">Physical regions of memory where the buffer is mapped</param>
        public void SynchronizeBufferRange(MultiRange range)
        {
            if (range.Count == 1)
            {
                MemoryRange subRange = range.GetSubRange(0);
                SynchronizeBufferRange(subRange.Address, subRange.Size, copyBackVirtual: true);
            }
            else
            {
                for (int index = 0; index < range.Count; index++)
                {
                    MemoryRange subRange = range.GetSubRange(index);
                    SynchronizeBufferRange(subRange.Address, subRange.Size, copyBackVirtual: false);
                }
            }
        }

        /// <summary>
        /// Performs guest to host memory synchronization of a given memory range.
        /// </summary>
        /// <param name="address">Start address of the memory range</param>
        /// <param name="size">Size in bytes of the memory range</param>
        /// <param name="copyBackVirtual">Whether virtual buffers that uses this buffer as backing memory should have its data copied back if modified</param>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private void SynchronizeBufferRange(ulong address, ulong size, bool copyBackVirtual)
        {
            if (size != 0)
            {
                Buffer buffer = _buffers.FindFirstOverlap(address, size);

                if (copyBackVirtual)
                {
                    buffer.CopyFromDependantVirtualBuffers();
                }

                buffer.SynchronizeMemory(address, size);
            }
        }

        /// <summary>
        /// Signal that the given buffer's handle has changed,
        /// forcing rebind and any overlapping multi-range buffers to be recreated.
        /// </summary>
        /// <param name="buffer">The buffer that has changed handle</param>
        public void BufferBackingChanged(Buffer buffer)
        {
            NotifyBuffersModified?.Invoke();

            RecreateMultiRangeBuffers(buffer.Address, buffer.Size);
        }

        /// <summary>
        /// Prune any invalid entries from a quick access dictionary.
        /// </summary>
        /// <param name="dictionary">Dictionary to prune</param>
        /// <param name="toDelete">List used to track entries to delete</param>
        private static void Prune(Dictionary<ulong, BufferCacheEntry> dictionary, ref List<ulong> toDelete)
        {
            foreach (var entry in dictionary)
            {
                if (entry.Value.UnmappedSequence != entry.Value.Buffer.UnmappedSequence)
                {
                    (toDelete ??= new()).Add(entry.Key);
                }
            }

            if (toDelete != null)
            {
                foreach (ulong entry in toDelete)
                {
                    dictionary.Remove(entry);
                }
            }
        }

        /// <summary>
        /// Prune any invalid entries from the quick access dictionaries.
        /// </summary>
        private void Prune()
        {
            List<ulong> toDelete = null;

            Prune(_dirtyCache, ref toDelete);

            toDelete?.Clear();

            Prune(_modifiedCache, ref toDelete);

            _pruneCaches = false;
        }

        /// <summary>
        /// Queues a prune of invalid entries the next time a dictionary cache is accessed.
        /// </summary>
        public void QueuePrune()
        {
            _pruneCaches = true;
        }

        /// <summary>
        /// Disposes all buffers in the cache.
        /// It's an error to use the buffer cache after disposal.
        /// </summary>
        public void Dispose()
        {
            lock (_buffers)
            {
                foreach (Buffer buffer in _buffers)
                {
                    buffer.Dispose();
                }
            }
        }
    }
}