aboutsummaryrefslogtreecommitdiff
path: root/src/Ryujinx.Cpu/AppleHv/HvVcpuPool.cs
blob: cb1944fe7e839922c9dc32e0c3797ec8b0ca7ef0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
using System;
using System.Threading;

namespace Ryujinx.Cpu.AppleHv
{
    class HvVcpuPool
    {
        // Since there's a limit on the number of VCPUs we can create,
        // and we assign one VCPU per guest thread, we need to ensure
        // there are enough VCPUs available for at least the maximum number of active guest threads.
        // To do that, we always destroy and re-create VCPUs that are above a given limit.
        // Those VCPUs are called "ephemeral" here because they are not kept for long.
        //
        // In the future, we might want to consider a smarter approach that only makes
        // VCPUs for threads that are not running frequently "ephemeral", but this is
        // complicated because VCPUs can only be destroyed by the same thread that created them.

        private const int MaxActiveVcpus = 4;

        public static readonly HvVcpuPool Instance = new HvVcpuPool();

        private int _totalVcpus;
        private int _maxVcpus;

        public HvVcpuPool()
        {
            HvApi.hv_vm_get_max_vcpu_count(out uint maxVcpuCount).ThrowOnError();
            _maxVcpus = (int)maxVcpuCount;
        }

        public HvVcpu Create(HvAddressSpace addressSpace, IHvExecutionContext shadowContext, Action<IHvExecutionContext> swapContext)
        {
            HvVcpu vcpu = CreateNew(addressSpace, shadowContext);
            vcpu.NativeContext.Load(shadowContext);
            swapContext(vcpu.NativeContext);
            return vcpu;
        }

        public void Destroy(HvVcpu vcpu, Action<IHvExecutionContext> swapContext)
        {
            vcpu.ShadowContext.Load(vcpu.NativeContext);
            swapContext(vcpu.ShadowContext);
            DestroyVcpu(vcpu);
        }

        public void Return(HvVcpu vcpu, Action<IHvExecutionContext> swapContext)
        {
            if (vcpu.IsEphemeral)
            {
                Destroy(vcpu, swapContext);
            }
        }

        public HvVcpu Rent(HvAddressSpace addressSpace, IHvExecutionContext shadowContext, HvVcpu vcpu, Action<IHvExecutionContext> swapContext)
        {
            if (vcpu.IsEphemeral)
            {
                return Create(addressSpace, shadowContext, swapContext);
            }
            else
            {
                return vcpu;
            }
        }

        private unsafe HvVcpu CreateNew(HvAddressSpace addressSpace, IHvExecutionContext shadowContext)
        {
            int newCount = IncrementVcpuCount();
            bool isEphemeral = newCount > _maxVcpus - MaxActiveVcpus;

            // Create VCPU.
            hv_vcpu_exit_t* exitInfo = null;
            HvApi.hv_vcpu_create(out ulong vcpuHandle, ref exitInfo, IntPtr.Zero).ThrowOnError();

            // Enable FP and SIMD instructions.
            HvApi.hv_vcpu_set_sys_reg(vcpuHandle, hv_sys_reg_t.HV_SYS_REG_CPACR_EL1, 0b11 << 20).ThrowOnError();

            addressSpace.InitializeMmu(vcpuHandle);

            HvExecutionContextVcpu nativeContext = new HvExecutionContextVcpu(vcpuHandle);

            HvVcpu vcpu = new HvVcpu(vcpuHandle, exitInfo, shadowContext, nativeContext, isEphemeral);

            return vcpu;
        }

        private void DestroyVcpu(HvVcpu vcpu)
        {
            HvApi.hv_vcpu_destroy(vcpu.Handle).ThrowOnError();
            DecrementVcpuCount();
        }

        private int IncrementVcpuCount()
        {
            return Interlocked.Increment(ref _totalVcpus);
        }

        private void DecrementVcpuCount()
        {
            Interlocked.Decrement(ref _totalVcpus);
        }
    }
}