aboutsummaryrefslogtreecommitdiff
path: root/src/ARMeilleure/Decoders/Decoder.cs
blob: 66d286928a317c45592df8183fcfe2b0911c09f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
using ARMeilleure.Decoders.Optimizations;
using ARMeilleure.Instructions;
using ARMeilleure.Memory;
using ARMeilleure.State;
using System;
using System.Collections.Generic;
using System.Diagnostics;

namespace ARMeilleure.Decoders
{
    static class Decoder
    {
        // We define a limit on the number of instructions that a function may have,
        // this prevents functions being potentially too large, which would
        // take too long to compile and use too much memory.
        private const int MaxInstsPerFunction = 2500;

        // For lower code quality translation, we set a lower limit since we're blocking execution.
        private const int MaxInstsPerFunctionLowCq = 500;

        public static Block[] Decode(IMemoryManager memory, ulong address, ExecutionMode mode, bool highCq, DecoderMode dMode)
        {
            List<Block> blocks = new();

            Queue<Block> workQueue = new();

            Dictionary<ulong, Block> visited = new();

            Debug.Assert(MaxInstsPerFunctionLowCq <= MaxInstsPerFunction);

            int opsCount = 0;

            int instructionLimit = highCq ? MaxInstsPerFunction : MaxInstsPerFunctionLowCq;

            Block GetBlock(ulong blkAddress)
            {
                if (!visited.TryGetValue(blkAddress, out Block block))
                {
                    block = new Block(blkAddress);

                    if ((dMode != DecoderMode.MultipleBlocks && visited.Count >= 1) ||
                        opsCount > instructionLimit ||
                        (visited.Count > 0 && !memory.IsMapped(blkAddress)))
                    {
                        block.Exit = true;
                        block.EndAddress = blkAddress;
                    }

                    workQueue.Enqueue(block);

                    visited.Add(blkAddress, block);
                }

                return block;
            }

            GetBlock(address);

            while (workQueue.TryDequeue(out Block currBlock))
            {
                // Check if the current block is inside another block.
                if (BinarySearch(blocks, currBlock.Address, out int nBlkIndex))
                {
                    Block nBlock = blocks[nBlkIndex];

                    if (nBlock.Address == currBlock.Address)
                    {
                        throw new InvalidOperationException("Found duplicate block address on the list.");
                    }

                    currBlock.Exit = false;

                    nBlock.Split(currBlock);

                    blocks.Insert(nBlkIndex + 1, currBlock);

                    continue;
                }

                if (!currBlock.Exit)
                {
                    // If we have a block after the current one, set the limit address.
                    ulong limitAddress = ulong.MaxValue;

                    if (nBlkIndex != blocks.Count)
                    {
                        Block nBlock = blocks[nBlkIndex];

                        int nextIndex = nBlkIndex + 1;

                        if (nBlock.Address < currBlock.Address && nextIndex < blocks.Count)
                        {
                            limitAddress = blocks[nextIndex].Address;
                        }
                        else if (nBlock.Address > currBlock.Address)
                        {
                            limitAddress = blocks[nBlkIndex].Address;
                        }
                    }

                    if (dMode == DecoderMode.SingleInstruction)
                    {
                        // Only read at most one instruction
                        limitAddress = currBlock.Address + 1;
                    }

                    FillBlock(memory, mode, currBlock, limitAddress);

                    opsCount += currBlock.OpCodes.Count;

                    if (currBlock.OpCodes.Count != 0)
                    {
                        // Set child blocks. "Branch" is the block the branch instruction
                        // points to (when taken), "Next" is the block at the next address,
                        // executed when the branch is not taken. For Unconditional Branches
                        // (except BL/BLR that are sub calls) or end of executable, Next is null.
                        OpCode lastOp = currBlock.GetLastOp();

                        bool isCall = IsCall(lastOp);

                        if (lastOp is IOpCodeBImm op && !isCall)
                        {
                            currBlock.Branch = GetBlock((ulong)op.Immediate);
                        }

                        if (isCall || !(IsUnconditionalBranch(lastOp) || IsTrap(lastOp)))
                        {
                            currBlock.Next = GetBlock(currBlock.EndAddress);
                        }
                    }
                }

                // Insert the new block on the list (sorted by address).
                if (blocks.Count != 0)
                {
                    Block nBlock = blocks[nBlkIndex];

                    blocks.Insert(nBlkIndex + (nBlock.Address < currBlock.Address ? 1 : 0), currBlock);
                }
                else
                {
                    blocks.Add(currBlock);
                }
            }

            if (blocks.Count == 1 && blocks[0].OpCodes.Count == 0)
            {
                Debug.Assert(blocks[0].Exit);
                Debug.Assert(blocks[0].Address == blocks[0].EndAddress);

                throw new InvalidOperationException($"Decoded a single empty exit block. Entry point = 0x{address:X}.");
            }

            if (dMode == DecoderMode.MultipleBlocks)
            {
                return TailCallRemover.RunPass(address, blocks);
            }
            else
            {
                return blocks.ToArray();
            }
        }

        public static bool BinarySearch(List<Block> blocks, ulong address, out int index)
        {
            index = 0;

            int left = 0;
            int right = blocks.Count - 1;

            while (left <= right)
            {
                int size = right - left;

                int middle = left + (size >> 1);

                Block block = blocks[middle];

                index = middle;

                if (address >= block.Address && address < block.EndAddress)
                {
                    return true;
                }

                if (address < block.Address)
                {
                    right = middle - 1;
                }
                else
                {
                    left = middle + 1;
                }
            }

            return false;
        }

        private static void FillBlock(
            IMemoryManager memory,
            ExecutionMode mode,
            Block block,
            ulong limitAddress)
        {
            ulong address = block.Address;
            int itBlockSize = 0;

            OpCode opCode;

            do
            {
                if (address >= limitAddress && itBlockSize == 0)
                {
                    break;
                }

                opCode = DecodeOpCode(memory, address, mode);

                block.OpCodes.Add(opCode);

                address += (ulong)opCode.OpCodeSizeInBytes;

                if (opCode is OpCodeT16IfThen it)
                {
                    itBlockSize = it.IfThenBlockSize;
                }
                else if (itBlockSize > 0)
                {
                    itBlockSize--;
                }
            }
            while (!(IsBranch(opCode) || IsException(opCode)));

            block.EndAddress = address;
        }

        private static bool IsBranch(OpCode opCode)
        {
            return opCode is OpCodeBImm ||
                   opCode is OpCodeBReg || IsAarch32Branch(opCode);
        }

        private static bool IsUnconditionalBranch(OpCode opCode)
        {
            return opCode is OpCodeBImmAl ||
                   opCode is OpCodeBReg || IsAarch32UnconditionalBranch(opCode);
        }

        private static bool IsAarch32UnconditionalBranch(OpCode opCode)
        {
            if (opCode is not OpCode32 op)
            {
                return false;
            }

            // Compare and branch instructions are always conditional.
            if (opCode.Instruction.Name == InstName.Cbz ||
                opCode.Instruction.Name == InstName.Cbnz)
            {
                return false;
            }

            // Note: On ARM32, most instructions have conditional execution,
            // so there's no "Always" (unconditional) branch like on ARM64.
            // We need to check if the condition is "Always" instead.
            return IsAarch32Branch(op) && op.Cond >= Condition.Al;
        }

        private static bool IsAarch32Branch(OpCode opCode)
        {
            // Note: On ARM32, most ALU operations can write to R15 (PC),
            // so we must consider such operations as a branch in potential aswell.
            if (opCode is IOpCode32Alu opAlu && opAlu.Rd == RegisterAlias.Aarch32Pc)
            {
                if (opCode is OpCodeT32)
                {
                    return opCode.Instruction.Name != InstName.Tst && opCode.Instruction.Name != InstName.Teq &&
                           opCode.Instruction.Name != InstName.Cmp && opCode.Instruction.Name != InstName.Cmn;
                }
                return true;
            }

            // Same thing for memory operations. We have the cases where PC is a target
            // register (Rt == 15 or (mask & (1 << 15)) != 0), and cases where there is
            // a write back to PC (wback == true && Rn == 15), however the later may
            // be "undefined" depending on the CPU, so compilers should not produce that.
            if (opCode is IOpCode32Mem || opCode is IOpCode32MemMult)
            {
                int rt, rn;

                bool wBack, isLoad;

                if (opCode is IOpCode32Mem opMem)
                {
                    rt = opMem.Rt;
                    rn = opMem.Rn;
                    wBack = opMem.WBack;
                    isLoad = opMem.IsLoad;

                    // For the dual load, we also need to take into account the
                    // case were Rt2 == 15 (PC).
                    if (rt == 14 && opMem.Instruction.Name == InstName.Ldrd)
                    {
                        rt = RegisterAlias.Aarch32Pc;
                    }
                }
                else if (opCode is IOpCode32MemMult opMemMult)
                {
                    const int PCMask = 1 << RegisterAlias.Aarch32Pc;

                    rt = (opMemMult.RegisterMask & PCMask) != 0 ? RegisterAlias.Aarch32Pc : 0;
                    rn = opMemMult.Rn;
                    wBack = opMemMult.PostOffset != 0;
                    isLoad = opMemMult.IsLoad;
                }
                else
                {
                    throw new NotImplementedException($"The type \"{opCode.GetType().Name}\" is not implemented on the decoder.");
                }

                if ((rt == RegisterAlias.Aarch32Pc && isLoad) ||
                    (rn == RegisterAlias.Aarch32Pc && wBack))
                {
                    return true;
                }
            }

            // Explicit branch instructions.
            return opCode is IOpCode32BImm ||
                   opCode is IOpCode32BReg;
        }

        private static bool IsCall(OpCode opCode)
        {
            return opCode.Instruction.Name == InstName.Bl ||
                   opCode.Instruction.Name == InstName.Blr ||
                   opCode.Instruction.Name == InstName.Blx;
        }

        private static bool IsException(OpCode opCode)
        {
            return IsTrap(opCode) || opCode.Instruction.Name == InstName.Svc;
        }

        private static bool IsTrap(OpCode opCode)
        {
            return opCode.Instruction.Name == InstName.Brk ||
                   opCode.Instruction.Name == InstName.Trap ||
                   opCode.Instruction.Name == InstName.Und;
        }

        public static OpCode DecodeOpCode(IMemoryManager memory, ulong address, ExecutionMode mode)
        {
            int opCode = memory.Read<int>(address);

            InstDescriptor inst;

            OpCodeTable.MakeOp makeOp;

            if (mode == ExecutionMode.Aarch64)
            {
                (inst, makeOp) = OpCodeTable.GetInstA64(opCode);
            }
            else
            {
                if (mode == ExecutionMode.Aarch32Arm)
                {
                    (inst, makeOp) = OpCodeTable.GetInstA32(opCode);
                }
                else /* if (mode == ExecutionMode.Aarch32Thumb) */
                {
                    (inst, makeOp) = OpCodeTable.GetInstT32(opCode);
                }
            }

            if (makeOp != null)
            {
                return makeOp(inst, address, opCode);
            }
            else
            {
                if (mode == ExecutionMode.Aarch32Thumb)
                {
                    return new OpCodeT16(inst, address, opCode);
                }
                else
                {
                    return new OpCode(inst, address, opCode);
                }
            }
        }
    }
}