aboutsummaryrefslogtreecommitdiff
path: root/src/ARMeilleure/CodeGen/X86/PreAllocator.cs
blob: 590c35c7b3d5919c884ff27b1db69ac4ebdd5742 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
using ARMeilleure.CodeGen.RegisterAllocators;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System;
using System.Diagnostics;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
using static ARMeilleure.IntermediateRepresentation.Operation.Factory;

namespace ARMeilleure.CodeGen.X86
{
    class PreAllocator
    {
        public static void RunPass(CompilerContext cctx, StackAllocator stackAlloc, out int maxCallArgs)
        {
            maxCallArgs = -1;

            Span<Operation> buffer = default;

            CallConvName callConv = CallingConvention.GetCurrentCallConv();

            Operand[] preservedArgs = new Operand[CallingConvention.GetArgumentsOnRegsCount()];

            for (BasicBlock block = cctx.Cfg.Blocks.First; block != null; block = block.ListNext)
            {
                Operation nextNode;

                for (Operation node = block.Operations.First; node != default; node = nextNode)
                {
                    nextNode = node.ListNext;

                    if (node.Instruction == Instruction.Phi)
                    {
                        continue;
                    }

                    InsertConstantRegCopies(block.Operations, node);
                    InsertDestructiveRegCopies(block.Operations, node);
                    InsertConstrainedRegCopies(block.Operations, node);

                    switch (node.Instruction)
                    {
                        case Instruction.Call:
                            // Get the maximum number of arguments used on a call.
                            // On windows, when a struct is returned from the call,
                            // we also need to pass the pointer where the struct
                            // should be written on the first argument.
                            int argsCount = node.SourcesCount - 1;

                            if (node.Destination != default && node.Destination.Type == OperandType.V128)
                            {
                                argsCount++;
                            }

                            if (maxCallArgs < argsCount)
                            {
                                maxCallArgs = argsCount;
                            }

                            // Copy values to registers expected by the function
                            // being called, as mandated by the ABI.
                            if (callConv == CallConvName.Windows)
                            {
                                PreAllocatorWindows.InsertCallCopies(block.Operations, stackAlloc, node);
                            }
                            else /* if (callConv == CallConvName.SystemV) */
                            {
                                PreAllocatorSystemV.InsertCallCopies(block.Operations, node);
                            }
                            break;

                        case Instruction.ConvertToFPUI:
                            GenerateConvertToFPUI(block.Operations, node);
                            break;

                        case Instruction.LoadArgument:
                            if (callConv == CallConvName.Windows)
                            {
                                nextNode = PreAllocatorWindows.InsertLoadArgumentCopy(cctx, ref buffer, block.Operations, preservedArgs, node);
                            }
                            else /* if (callConv == CallConvName.SystemV) */
                            {
                                nextNode = PreAllocatorSystemV.InsertLoadArgumentCopy(cctx, ref buffer, block.Operations, preservedArgs, node);
                            }
                            break;

                        case Instruction.Negate:
                            if (!node.GetSource(0).Type.IsInteger())
                            {
                                GenerateNegate(block.Operations, node);
                            }
                            break;

                        case Instruction.Return:
                            if (callConv == CallConvName.Windows)
                            {
                                PreAllocatorWindows.InsertReturnCopy(cctx, block.Operations, preservedArgs, node);
                            }
                            else /* if (callConv == CallConvName.SystemV) */
                            {
                                PreAllocatorSystemV.InsertReturnCopy(block.Operations, node);
                            }
                            break;

                        case Instruction.Tailcall:
                            if (callConv == CallConvName.Windows)
                            {
                                PreAllocatorWindows.InsertTailcallCopies(block.Operations, node);
                            }
                            else
                            {
                                PreAllocatorSystemV.InsertTailcallCopies(block.Operations, node);
                            }
                            break;

                        case Instruction.VectorInsert8:
                            if (!HardwareCapabilities.SupportsSse41)
                            {
                                GenerateVectorInsert8(block.Operations, node);
                            }
                            break;

                        case Instruction.Extended:
                            if (node.Intrinsic == Intrinsic.X86Ldmxcsr)
                            {
                                int stackOffset = stackAlloc.Allocate(OperandType.I32);

                                node.SetSources(new Operand[] { Const(stackOffset), node.GetSource(0) });
                            }
                            else if (node.Intrinsic == Intrinsic.X86Stmxcsr)
                            {
                                int stackOffset = stackAlloc.Allocate(OperandType.I32);

                                node.SetSources(new Operand[] { Const(stackOffset) });
                            }
                            break;
                    }
                }
            }
        }

        protected static void InsertConstantRegCopies(IntrusiveList<Operation> nodes, Operation node)
        {
            if (node.SourcesCount == 0 || IsXmmIntrinsic(node))
            {
                return;
            }

            Instruction inst = node.Instruction;

            Operand src1 = node.GetSource(0);
            Operand src2;

            if (src1.Kind == OperandKind.Constant)
            {
                if (!src1.Type.IsInteger())
                {
                    // Handle non-integer types (FP32, FP64 and V128).
                    // For instructions without an immediate operand, we do the following:
                    // - Insert a copy with the constant value (as integer) to a GPR.
                    // - Insert a copy from the GPR to a XMM register.
                    // - Replace the constant use with the XMM register.
                    src1 = AddXmmCopy(nodes, node, src1);

                    node.SetSource(0, src1);
                }
                else if (!HasConstSrc1(inst))
                {
                    // Handle integer types.
                    // Most ALU instructions accepts a 32-bits immediate on the second operand.
                    // We need to ensure the following:
                    // - If the constant is on operand 1, we need to move it.
                    // -- But first, we try to swap operand 1 and 2 if the instruction is commutative.
                    // -- Doing so may allow us to encode the constant as operand 2 and avoid a copy.
                    // - If the constant is on operand 2, we check if the instruction supports it,
                    // if not, we also add a copy. 64-bits constants are usually not supported.
                    if (IsCommutative(node))
                    {
                        src2 = node.GetSource(1);

                        (src2, src1) = (src1, src2);

                        node.SetSource(0, src1);
                        node.SetSource(1, src2);
                    }

                    if (src1.Kind == OperandKind.Constant)
                    {
                        src1 = AddCopy(nodes, node, src1);

                        node.SetSource(0, src1);
                    }
                }
            }

            if (node.SourcesCount < 2)
            {
                return;
            }

            src2 = node.GetSource(1);

            if (src2.Kind == OperandKind.Constant)
            {
                if (!src2.Type.IsInteger())
                {
                    src2 = AddXmmCopy(nodes, node, src2);

                    node.SetSource(1, src2);
                }
                else if (!HasConstSrc2(inst) || CodeGenCommon.IsLongConst(src2))
                {
                    src2 = AddCopy(nodes, node, src2);

                    node.SetSource(1, src2);
                }
            }
        }

        protected static void InsertConstrainedRegCopies(IntrusiveList<Operation> nodes, Operation node)
        {
            Operand dest = node.Destination;

            switch (node.Instruction)
            {
                case Instruction.CompareAndSwap:
                case Instruction.CompareAndSwap16:
                case Instruction.CompareAndSwap8:
                    {
                        OperandType type = node.GetSource(1).Type;

                        if (type == OperandType.V128)
                        {
                            // Handle the many restrictions of the compare and exchange (16 bytes) instruction:
                            // - The expected value should be in RDX:RAX.
                            // - The new value to be written should be in RCX:RBX.
                            // - The value at the memory location is loaded to RDX:RAX.
                            void SplitOperand(Operand source, Operand lr, Operand hr)
                            {
                                nodes.AddBefore(node, Operation(Instruction.VectorExtract, lr, source, Const(0)));
                                nodes.AddBefore(node, Operation(Instruction.VectorExtract, hr, source, Const(1)));
                            }

                            Operand rax = Gpr(X86Register.Rax, OperandType.I64);
                            Operand rbx = Gpr(X86Register.Rbx, OperandType.I64);
                            Operand rcx = Gpr(X86Register.Rcx, OperandType.I64);
                            Operand rdx = Gpr(X86Register.Rdx, OperandType.I64);

                            SplitOperand(node.GetSource(1), rax, rdx);
                            SplitOperand(node.GetSource(2), rbx, rcx);

                            Operation operation = node;

                            node = nodes.AddAfter(node, Operation(Instruction.VectorCreateScalar, dest, rax));
                            nodes.AddAfter(node, Operation(Instruction.VectorInsert, dest, dest, rdx, Const(1)));

                            operation.SetDestinations(new Operand[] { rdx, rax });
                            operation.SetSources(new Operand[] { operation.GetSource(0), rdx, rax, rcx, rbx });
                        }
                        else
                        {
                            // Handle the many restrictions of the compare and exchange (32/64) instruction:
                            // - The expected value should be in (E/R)AX.
                            // - The value at the memory location is loaded to (E/R)AX.
                            Operand expected = node.GetSource(1);
                            Operand newValue = node.GetSource(2);

                            Operand rax = Gpr(X86Register.Rax, expected.Type);

                            nodes.AddBefore(node, Operation(Instruction.Copy, rax, expected));

                            // We need to store the new value into a temp, since it may
                            // be a constant, and this instruction does not support immediate operands.
                            Operand temp = Local(newValue.Type);

                            nodes.AddBefore(node, Operation(Instruction.Copy, temp, newValue));

                            node.SetSources(new Operand[] { node.GetSource(0), rax, temp });

                            nodes.AddAfter(node, Operation(Instruction.Copy, dest, rax));

                            node.Destination = rax;
                        }

                        break;
                    }

                case Instruction.Divide:
                case Instruction.DivideUI:
                    {
                        // Handle the many restrictions of the division instructions:
                        // - The dividend is always in RDX:RAX.
                        // - The result is always in RAX.
                        // - Additionally it also writes the remainder in RDX.
                        if (dest.Type.IsInteger())
                        {
                            Operand src1 = node.GetSource(0);

                            Operand rax = Gpr(X86Register.Rax, src1.Type);
                            Operand rdx = Gpr(X86Register.Rdx, src1.Type);

                            nodes.AddBefore(node, Operation(Instruction.Copy, rax, src1));
                            nodes.AddBefore(node, Operation(Instruction.Clobber, rdx));

                            nodes.AddAfter(node, Operation(Instruction.Copy, dest, rax));

                            node.SetSources(new Operand[] { rdx, rax, node.GetSource(1) });
                            node.Destination = rax;
                        }

                        break;
                    }

                case Instruction.Extended:
                    {
                        bool isBlend = node.Intrinsic == Intrinsic.X86Blendvpd ||
                                   node.Intrinsic == Intrinsic.X86Blendvps ||
                                   node.Intrinsic == Intrinsic.X86Pblendvb;

                        // BLENDVPD, BLENDVPS, PBLENDVB last operand is always implied to be XMM0 when VEX is not supported.
                        // SHA256RNDS2 always has an implied XMM0 as a last operand.
                        if ((isBlend && !HardwareCapabilities.SupportsVexEncoding) || node.Intrinsic == Intrinsic.X86Sha256Rnds2)
                        {
                            Operand xmm0 = Xmm(X86Register.Xmm0, OperandType.V128);

                            nodes.AddBefore(node, Operation(Instruction.Copy, xmm0, node.GetSource(2)));

                            node.SetSource(2, xmm0);
                        }

                        break;
                    }

                case Instruction.Multiply64HighSI:
                case Instruction.Multiply64HighUI:
                    {
                        // Handle the many restrictions of the i64 * i64 = i128 multiply instructions:
                        // - The multiplicand is always in RAX.
                        // - The lower 64-bits of the result is always in RAX.
                        // - The higher 64-bits of the result is always in RDX.
                        Operand src1 = node.GetSource(0);

                        Operand rax = Gpr(X86Register.Rax, src1.Type);
                        Operand rdx = Gpr(X86Register.Rdx, src1.Type);

                        nodes.AddBefore(node, Operation(Instruction.Copy, rax, src1));

                        node.SetSource(0, rax);

                        nodes.AddAfter(node, Operation(Instruction.Copy, dest, rdx));

                        node.SetDestinations(new Operand[] { rdx, rax });

                        break;
                    }

                case Instruction.RotateRight:
                case Instruction.ShiftLeft:
                case Instruction.ShiftRightSI:
                case Instruction.ShiftRightUI:
                    {
                        // The shift register is always implied to be CL (low 8-bits of RCX or ECX).
                        if (node.GetSource(1).Kind == OperandKind.LocalVariable)
                        {
                            Operand rcx = Gpr(X86Register.Rcx, OperandType.I32);

                            nodes.AddBefore(node, Operation(Instruction.Copy, rcx, node.GetSource(1)));

                            node.SetSource(1, rcx);
                        }

                        break;
                    }
            }
        }

        protected static void InsertDestructiveRegCopies(IntrusiveList<Operation> nodes, Operation node)
        {
            if (node.Destination == default || node.SourcesCount == 0)
            {
                return;
            }

            Instruction inst = node.Instruction;

            Operand dest = node.Destination;
            Operand src1 = node.GetSource(0);

            // The multiply instruction (that maps to IMUL) is somewhat special, it has
            // a three operand form where the second source is a immediate value.
            bool threeOperandForm = inst == Instruction.Multiply && node.GetSource(1).Kind == OperandKind.Constant;

            if (IsSameOperandDestSrc1(node) && src1.Kind == OperandKind.LocalVariable && !threeOperandForm)
            {
                bool useNewLocal = false;

                for (int srcIndex = 1; srcIndex < node.SourcesCount; srcIndex++)
                {
                    if (node.GetSource(srcIndex) == dest)
                    {
                        useNewLocal = true;

                        break;
                    }
                }

                if (useNewLocal)
                {
                    // Dest is being used as some source already, we need to use a new
                    // local to store the temporary value, otherwise the value on dest
                    // local would be overwritten.
                    Operand temp = Local(dest.Type);

                    nodes.AddBefore(node, Operation(Instruction.Copy, temp, src1));

                    node.SetSource(0, temp);

                    nodes.AddAfter(node, Operation(Instruction.Copy, dest, temp));

                    node.Destination = temp;
                }
                else
                {
                    nodes.AddBefore(node, Operation(Instruction.Copy, dest, src1));

                    node.SetSource(0, dest);
                }
            }
            else if (inst == Instruction.ConditionalSelect)
            {
                Operand src2 = node.GetSource(1);
                Operand src3 = node.GetSource(2);

                if (src1 == dest || src2 == dest)
                {
                    Operand temp = Local(dest.Type);

                    nodes.AddBefore(node, Operation(Instruction.Copy, temp, src3));

                    node.SetSource(2, temp);

                    nodes.AddAfter(node, Operation(Instruction.Copy, dest, temp));

                    node.Destination = temp;
                }
                else
                {
                    nodes.AddBefore(node, Operation(Instruction.Copy, dest, src3));

                    node.SetSource(2, dest);
                }
            }
        }

        private static void GenerateConvertToFPUI(IntrusiveList<Operation> nodes, Operation node)
        {
            // Unsigned integer to FP conversions are not supported on X86.
            // We need to turn them into signed integer to FP conversions, and
            // adjust the final result.
            Operand dest = node.Destination;
            Operand source = node.GetSource(0);

            Debug.Assert(source.Type.IsInteger(), $"Invalid source type \"{source.Type}\".");

            Operation currentNode = node;

            if (source.Type == OperandType.I32)
            {
                // For 32-bits integers, we can just zero-extend to 64-bits,
                // and then use the 64-bits signed conversion instructions.
                Operand zex = Local(OperandType.I64);

                node = nodes.AddAfter(node, Operation(Instruction.ZeroExtend32, zex, source));
                nodes.AddAfter(node, Operation(Instruction.ConvertToFP, dest, zex));
            }
            else /* if (source.Type == OperandType.I64) */
            {
                // For 64-bits integers, we need to do the following:
                // - Ensure that the integer has the most significant bit clear.
                // -- This can be done by shifting the value right by 1, that is, dividing by 2.
                // -- The least significant bit is lost in this case though.
                // - We can then convert the shifted value with a signed integer instruction.
                // - The result still needs to be corrected after that.
                // -- First, we need to multiply the result by 2, as we divided it by 2 before.
                // --- This can be done efficiently by adding the result to itself.
                // -- Then, we need to add the least significant bit that was shifted out.
                // --- We can convert the least significant bit to float, and add it to the result.
                Operand lsb = Local(OperandType.I64);
                Operand half = Local(OperandType.I64);

                Operand lsbF = Local(dest.Type);

                node = nodes.AddAfter(node, Operation(Instruction.Copy, lsb, source));
                node = nodes.AddAfter(node, Operation(Instruction.Copy, half, source));

                node = nodes.AddAfter(node, Operation(Instruction.BitwiseAnd, lsb, lsb, Const(1L)));
                node = nodes.AddAfter(node, Operation(Instruction.ShiftRightUI, half, half, Const(1)));

                node = nodes.AddAfter(node, Operation(Instruction.ConvertToFP, lsbF, lsb));
                node = nodes.AddAfter(node, Operation(Instruction.ConvertToFP, dest, half));

                node = nodes.AddAfter(node, Operation(Instruction.Add, dest, dest, dest));
                nodes.AddAfter(node, Operation(Instruction.Add, dest, dest, lsbF));
            }

            Delete(nodes, currentNode);
        }

        private static void GenerateNegate(IntrusiveList<Operation> nodes, Operation node)
        {
            // There's no SSE FP negate instruction, so we need to transform that into
            // a XOR of the value to be negated with a mask with the highest bit set.
            // This also produces -0 for a negation of the value 0.
            Operand dest = node.Destination;
            Operand source = node.GetSource(0);

            Debug.Assert(dest.Type == OperandType.FP32 ||
                         dest.Type == OperandType.FP64, $"Invalid destination type \"{dest.Type}\".");

            Operation currentNode = node;

            Operand res = Local(dest.Type);

            node = nodes.AddAfter(node, Operation(Instruction.VectorOne, res));

            if (dest.Type == OperandType.FP32)
            {
                node = nodes.AddAfter(node, Operation(Intrinsic.X86Pslld, res, res, Const(31)));
            }
            else /* if (dest.Type == OperandType.FP64) */
            {
                node = nodes.AddAfter(node, Operation(Intrinsic.X86Psllq, res, res, Const(63)));
            }

            node = nodes.AddAfter(node, Operation(Intrinsic.X86Xorps, res, res, source));

            nodes.AddAfter(node, Operation(Instruction.Copy, dest, res));

            Delete(nodes, currentNode);
        }

        private static void GenerateVectorInsert8(IntrusiveList<Operation> nodes, Operation node)
        {
            // Handle vector insertion, when SSE 4.1 is not supported.
            Operand dest = node.Destination;
            Operand src1 = node.GetSource(0); // Vector
            Operand src2 = node.GetSource(1); // Value
            Operand src3 = node.GetSource(2); // Index

            Debug.Assert(src3.Kind == OperandKind.Constant);

            byte index = src3.AsByte();

            Debug.Assert(index < 16);

            Operation currentNode = node;

            Operand temp1 = Local(OperandType.I32);
            Operand temp2 = Local(OperandType.I32);

            node = nodes.AddAfter(node, Operation(Instruction.Copy, temp2, src2));

            Operation vextOp = Operation(Instruction.VectorExtract16, temp1, src1, Const(index >> 1));

            node = nodes.AddAfter(node, vextOp);

            if ((index & 1) != 0)
            {
                node = nodes.AddAfter(node, Operation(Instruction.ZeroExtend8, temp1, temp1));
                node = nodes.AddAfter(node, Operation(Instruction.ShiftLeft, temp2, temp2, Const(8)));
                node = nodes.AddAfter(node, Operation(Instruction.BitwiseOr, temp1, temp1, temp2));
            }
            else
            {
                node = nodes.AddAfter(node, Operation(Instruction.ZeroExtend8, temp2, temp2));
                node = nodes.AddAfter(node, Operation(Instruction.BitwiseAnd, temp1, temp1, Const(0xff00)));
                node = nodes.AddAfter(node, Operation(Instruction.BitwiseOr, temp1, temp1, temp2));
            }

            Operation vinsOp = Operation(Instruction.VectorInsert16, dest, src1, temp1, Const(index >> 1));

            nodes.AddAfter(node, vinsOp);

            Delete(nodes, currentNode);
        }

        protected static Operand AddXmmCopy(IntrusiveList<Operation> nodes, Operation node, Operand source)
        {
            Operand temp = Local(source.Type);
            Operand intConst = AddCopy(nodes, node, GetIntConst(source));

            Operation copyOp = Operation(Instruction.VectorCreateScalar, temp, intConst);

            nodes.AddBefore(node, copyOp);

            return temp;
        }

        protected static Operand AddCopy(IntrusiveList<Operation> nodes, Operation node, Operand source)
        {
            Operand temp = Local(source.Type);

            Operation copyOp = Operation(Instruction.Copy, temp, source);

            nodes.AddBefore(node, copyOp);

            return temp;
        }

        private static Operand GetIntConst(Operand value)
        {
            if (value.Type == OperandType.FP32)
            {
                return Const(value.AsInt32());
            }
            else if (value.Type == OperandType.FP64)
            {
                return Const(value.AsInt64());
            }

            return value;
        }

        protected static void Delete(IntrusiveList<Operation> nodes, Operation node)
        {
            node.Destination = default;

            for (int index = 0; index < node.SourcesCount; index++)
            {
                node.SetSource(index, default);
            }

            nodes.Remove(node);
        }

        protected static Operand Gpr(X86Register register, OperandType type)
        {
            return Register((int)register, RegisterType.Integer, type);
        }

        protected static Operand Xmm(X86Register register, OperandType type)
        {
            return Register((int)register, RegisterType.Vector, type);
        }

        private static bool IsSameOperandDestSrc1(Operation operation)
        {
            switch (operation.Instruction)
            {
                case Instruction.Add:
                    return !HardwareCapabilities.SupportsVexEncoding && !operation.Destination.Type.IsInteger();
                case Instruction.Multiply:
                case Instruction.Subtract:
                    return !HardwareCapabilities.SupportsVexEncoding || operation.Destination.Type.IsInteger();

                case Instruction.BitwiseAnd:
                case Instruction.BitwiseExclusiveOr:
                case Instruction.BitwiseNot:
                case Instruction.BitwiseOr:
                case Instruction.ByteSwap:
                case Instruction.Negate:
                case Instruction.RotateRight:
                case Instruction.ShiftLeft:
                case Instruction.ShiftRightSI:
                case Instruction.ShiftRightUI:
                    return true;

                case Instruction.Divide:
                    return !HardwareCapabilities.SupportsVexEncoding && !operation.Destination.Type.IsInteger();

                case Instruction.VectorInsert:
                case Instruction.VectorInsert16:
                case Instruction.VectorInsert8:
                    return !HardwareCapabilities.SupportsVexEncoding;

                case Instruction.Extended:
                    return IsIntrinsicSameOperandDestSrc1(operation);
            }

            return IsVexSameOperandDestSrc1(operation);
        }

        private static bool IsIntrinsicSameOperandDestSrc1(Operation operation)
        {
            IntrinsicInfo info = IntrinsicTable.GetInfo(operation.Intrinsic);

            return info.Type == IntrinsicType.Crc32 || info.Type == IntrinsicType.Fma || IsVexSameOperandDestSrc1(operation);
        }

        private static bool IsVexSameOperandDestSrc1(Operation operation)
        {
            if (IsIntrinsic(operation.Instruction))
            {
                IntrinsicInfo info = IntrinsicTable.GetInfo(operation.Intrinsic);

                bool hasVex = HardwareCapabilities.SupportsVexEncoding && Assembler.SupportsVexPrefix(info.Inst);

                bool isUnary = operation.SourcesCount < 2;

                bool hasVecDest = operation.Destination != default && operation.Destination.Type == OperandType.V128;

                return !hasVex && !isUnary && hasVecDest;
            }

            return false;
        }

        private static bool HasConstSrc1(Instruction inst)
        {
            return inst switch
            {
                Instruction.Copy or Instruction.LoadArgument or Instruction.Spill or Instruction.SpillArg => true,
                _ => false,
            };
        }

        private static bool HasConstSrc2(Instruction inst)
        {
            switch (inst)
            {
                case Instruction.Add:
                case Instruction.BitwiseAnd:
                case Instruction.BitwiseExclusiveOr:
                case Instruction.BitwiseOr:
                case Instruction.BranchIf:
                case Instruction.Compare:
                case Instruction.Multiply:
                case Instruction.RotateRight:
                case Instruction.ShiftLeft:
                case Instruction.ShiftRightSI:
                case Instruction.ShiftRightUI:
                case Instruction.Store:
                case Instruction.Store16:
                case Instruction.Store8:
                case Instruction.Subtract:
                case Instruction.VectorExtract:
                case Instruction.VectorExtract16:
                case Instruction.VectorExtract8:
                    return true;
            }

            return false;
        }

        private static bool IsCommutative(Operation operation)
        {
            switch (operation.Instruction)
            {
                case Instruction.Add:
                case Instruction.BitwiseAnd:
                case Instruction.BitwiseExclusiveOr:
                case Instruction.BitwiseOr:
                case Instruction.Multiply:
                    return true;

                case Instruction.BranchIf:
                case Instruction.Compare:
                    {
                        Operand comp = operation.GetSource(2);

                        Debug.Assert(comp.Kind == OperandKind.Constant);

                        var compType = (Comparison)comp.AsInt32();

                        return compType == Comparison.Equal || compType == Comparison.NotEqual;
                    }
            }

            return false;
        }

        private static bool IsIntrinsic(Instruction inst)
        {
            return inst == Instruction.Extended;
        }

        private static bool IsXmmIntrinsic(Operation operation)
        {
            if (operation.Instruction != Instruction.Extended)
            {
                return false;
            }

            IntrinsicInfo info = IntrinsicTable.GetInfo(operation.Intrinsic);

            return info.Type != IntrinsicType.Crc32;
        }
    }
}