aboutsummaryrefslogtreecommitdiff
path: root/Ryujinx.Graphics.GAL/Multithreading/ThreadedRenderer.cs
blob: e105a09267438ea15eaf34e1e84136271e474bb8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
using Ryujinx.Common;
using Ryujinx.Common.Configuration;
using Ryujinx.Graphics.GAL.Multithreading.Commands;
using Ryujinx.Graphics.GAL.Multithreading.Commands.Buffer;
using Ryujinx.Graphics.GAL.Multithreading.Commands.Renderer;
using Ryujinx.Graphics.GAL.Multithreading.Model;
using Ryujinx.Graphics.GAL.Multithreading.Resources;
using Ryujinx.Graphics.GAL.Multithreading.Resources.Programs;
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;

namespace Ryujinx.Graphics.GAL.Multithreading
{
    /// <summary>
    /// The ThreadedRenderer is a layer that can be put in front of any Renderer backend to make
    /// its processing happen on a separate thread, rather than intertwined with the GPU emulation.
    /// A new thread is created to handle the GPU command processing, separate from the renderer thread.
    /// Calls to the renderer, pipeline and resources are queued to happen on the renderer thread.
    /// </summary>
    public class ThreadedRenderer : IRenderer
    {
        private const int SpanPoolBytes = 4 * 1024 * 1024;
        private const int MaxRefsPerCommand = 2;
        private const int QueueCount = 10000;

        private int _elementSize;
        private IRenderer _baseRenderer;
        private Thread _gpuThread;
        private bool _disposed;
        private bool _running;

        private AutoResetEvent _frameComplete = new AutoResetEvent(true);

        private ManualResetEventSlim _galWorkAvailable;
        private CircularSpanPool _spanPool;

        private ManualResetEventSlim _invokeRun;

        private bool _lastSampleCounterClear = true;

        private byte[] _commandQueue;
        private object[] _refQueue;

        private int _consumerPtr;
        private int _commandCount;

        private int _producerPtr;
        private int _lastProducedPtr;
        private int _invokePtr;

        private int _refProducerPtr;
        private int _refConsumerPtr;

        public event EventHandler<ScreenCaptureImageInfo> ScreenCaptured;

        internal BufferMap Buffers { get; }
        internal SyncMap Sync { get; }
        internal CircularSpanPool SpanPool { get; }
        internal ProgramQueue Programs { get; }

        public IPipeline Pipeline { get; }
        public IWindow Window { get; }

        public IRenderer BaseRenderer => _baseRenderer;

        public bool PreferThreading => _baseRenderer.PreferThreading;

        public ThreadedRenderer(IRenderer renderer)
        {
            _baseRenderer = renderer;

            renderer.ScreenCaptured += (object sender, ScreenCaptureImageInfo info) => ScreenCaptured?.Invoke(this, info);

            Pipeline = new ThreadedPipeline(this, renderer.Pipeline);
            Window = new ThreadedWindow(this, renderer);
            Buffers = new BufferMap();
            Sync = new SyncMap();
            Programs = new ProgramQueue(renderer);

            _galWorkAvailable = new ManualResetEventSlim(false);
            _invokeRun = new ManualResetEventSlim();
            _spanPool = new CircularSpanPool(this, SpanPoolBytes);
            SpanPool = _spanPool;

            _elementSize = BitUtils.AlignUp(CommandHelper.GetMaxCommandSize(), 4);

            _commandQueue = new byte[_elementSize * QueueCount];
            _refQueue = new object[MaxRefsPerCommand * QueueCount];
        }

        public void RunLoop(Action gpuLoop)
        {
            _running = true;

            _gpuThread = new Thread(() => {
                gpuLoop();
                _running = false;
                _galWorkAvailable.Set();
            });

            _gpuThread.Name = "GPU.MainThread";
            _gpuThread.Start();

            RenderLoop();
        }

        public void RenderLoop()
        {
            // Power through the render queue until the Gpu thread work is done.

            while (_running && !_disposed)
            {
                _galWorkAvailable.Wait();
                _galWorkAvailable.Reset();

                // The other thread can only increase the command count.
                // We can assume that if it is above 0, it will stay there or get higher.

                while (_commandCount > 0)
                {
                    int commandPtr = _consumerPtr;

                    Span<byte> command = new Span<byte>(_commandQueue, commandPtr * _elementSize, _elementSize);

                    // Run the command.

                    CommandHelper.RunCommand(command, this, _baseRenderer);

                    if (Interlocked.CompareExchange(ref _invokePtr, -1, commandPtr) == commandPtr)
                    {
                        _invokeRun.Set();
                    }

                    _consumerPtr = (_consumerPtr + 1) % QueueCount;

                    Interlocked.Decrement(ref _commandCount);
                }
            }
        }

        internal SpanRef<T> CopySpan<T>(ReadOnlySpan<T> data) where T : unmanaged
        {
            return _spanPool.Insert(data);
        }

        private TableRef<T> Ref<T>(T reference)
        {
            return new TableRef<T>(this, reference);
        }

        internal ref T New<T>() where T : struct
        {
            while (_producerPtr == (_consumerPtr + QueueCount - 1) % QueueCount)
            {
                // If incrementing the producer pointer would overflow, we need to wait.
                // _consumerPtr can only move forward, so there's no race to worry about here.

                Thread.Sleep(1);
            }

            int taken = _producerPtr;
            _lastProducedPtr = taken;

            _producerPtr = (_producerPtr + 1) % QueueCount;

            Span<byte> memory = new Span<byte>(_commandQueue, taken * _elementSize, _elementSize);
            ref T result = ref Unsafe.As<byte, T>(ref MemoryMarshal.GetReference(memory));

            memory[memory.Length - 1] = (byte)((IGALCommand)result).CommandType;

            return ref result;
        }

        internal int AddTableRef(object obj)
        {
            // The reference table is sized so that it will never overflow, so long as the references are taken after the command is allocated.

            int index = _refProducerPtr;

            _refQueue[index] = obj;

            _refProducerPtr = (_refProducerPtr + 1) % _refQueue.Length;

            return index;
        }

        internal object RemoveTableRef(int index)
        {
            Debug.Assert(index == _refConsumerPtr);

            object result = _refQueue[_refConsumerPtr];
            _refQueue[_refConsumerPtr] = null;

            _refConsumerPtr = (_refConsumerPtr + 1) % _refQueue.Length;

            return result;
        }

        internal void QueueCommand()
        {
            int result = Interlocked.Increment(ref _commandCount);

            if (result == 1)
            {
                _galWorkAvailable.Set();
            }
        }

        internal void InvokeCommand()
        {
            _invokeRun.Reset();
            _invokePtr = _lastProducedPtr;

            QueueCommand();

            // Wait for the command to complete.
            _invokeRun.Wait();
        }

        internal void WaitForFrame()
        {
            _frameComplete.WaitOne();
        }

        internal void SignalFrame()
        {
            _frameComplete.Set();
        }

        internal bool IsGpuThread()
        {
            return Thread.CurrentThread == _gpuThread;
        }

        public void BackgroundContextAction(Action action, bool alwaysBackground = false)
        {
            if (IsGpuThread() && !alwaysBackground)
            {
                // The action must be performed on the render thread.
                New<ActionCommand>().Set(Ref(action));
                InvokeCommand();
            }
            else
            {
                _baseRenderer.BackgroundContextAction(action, true);
            }
        }

        public BufferHandle CreateBuffer(int size)
        {
            BufferHandle handle = Buffers.CreateBufferHandle();
            New<CreateBufferCommand>().Set(handle, size);
            QueueCommand();

            return handle;
        }

        public IProgram CreateProgram(ShaderSource[] shaders, ShaderInfo info)
        {
            var program = new ThreadedProgram(this);

            SourceProgramRequest request = new SourceProgramRequest(program, shaders, info);

            Programs.Add(request);

            New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
            QueueCommand();

            return program;
        }

        public ISampler CreateSampler(SamplerCreateInfo info)
        {
            var sampler = new ThreadedSampler(this);
            New<CreateSamplerCommand>().Set(Ref(sampler), info);
            QueueCommand();

            return sampler;
        }

        public void CreateSync(ulong id)
        {
            Sync.CreateSyncHandle(id);
            New<CreateSyncCommand>().Set(id);
            QueueCommand();
        }

        public ITexture CreateTexture(TextureCreateInfo info, float scale)
        {
            if (IsGpuThread())
            {
                var texture = new ThreadedTexture(this, info, scale);
                New<CreateTextureCommand>().Set(Ref(texture), info, scale);
                QueueCommand();

                return texture;
            }
            else
            {
                var texture = new ThreadedTexture(this, info, scale);
                texture.Base = _baseRenderer.CreateTexture(info, scale);

                return texture;
            }
        }

        public void DeleteBuffer(BufferHandle buffer)
        {
            New<BufferDisposeCommand>().Set(buffer);
            QueueCommand();
        }

        public ReadOnlySpan<byte> GetBufferData(BufferHandle buffer, int offset, int size)
        {
            if (IsGpuThread())
            {
                ResultBox<PinnedSpan<byte>> box = new ResultBox<PinnedSpan<byte>>();
                New<BufferGetDataCommand>().Set(buffer, offset, size, Ref(box));
                InvokeCommand();

                return box.Result.Get();
            }
            else
            {
                return _baseRenderer.GetBufferData(Buffers.MapBufferBlocking(buffer), offset, size);
            }
        }

        public Capabilities GetCapabilities()
        {
            ResultBox<Capabilities> box = new ResultBox<Capabilities>();
            New<GetCapabilitiesCommand>().Set(Ref(box));
            InvokeCommand();

            return box.Result;
        }

        public HardwareInfo GetHardwareInfo()
        {
            return _baseRenderer.GetHardwareInfo();
        }

        /// <summary>
        /// Initialize the base renderer. Must be called on the render thread.
        /// </summary>
        /// <param name="logLevel">Log level to use</param>
        public void Initialize(GraphicsDebugLevel logLevel)
        {
            _baseRenderer.Initialize(logLevel);
        }

        public IProgram LoadProgramBinary(byte[] programBinary, bool hasFragmentShader, ShaderInfo info)
        {
            var program = new ThreadedProgram(this);

            BinaryProgramRequest request = new BinaryProgramRequest(program, programBinary, hasFragmentShader, info);
            Programs.Add(request);

            New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
            QueueCommand();

            return program;
        }

        public void PreFrame()
        {
            New<PreFrameCommand>();
            QueueCommand();
        }

        public ICounterEvent ReportCounter(CounterType type, EventHandler<ulong> resultHandler, bool hostReserved)
        {
            ThreadedCounterEvent evt = new ThreadedCounterEvent(this, type, _lastSampleCounterClear);
            New<ReportCounterCommand>().Set(Ref(evt), type, Ref(resultHandler), hostReserved);
            QueueCommand();

            if (type == CounterType.SamplesPassed)
            {
                _lastSampleCounterClear = false;
            }

            return evt;
        }

        public void ResetCounter(CounterType type)
        {
            New<ResetCounterCommand>().Set(type);
            QueueCommand();
            _lastSampleCounterClear = true;
        }

        public void Screenshot()
        {
            _baseRenderer.Screenshot();
        }

        public void SetBufferData(BufferHandle buffer, int offset, ReadOnlySpan<byte> data)
        {
            New<BufferSetDataCommand>().Set(buffer, offset, CopySpan(data));
            QueueCommand();
        }

        public void UpdateCounters()
        {
            New<UpdateCountersCommand>();
            QueueCommand();
        }

        public void WaitSync(ulong id)
        {
            Sync.WaitSyncAvailability(id);

            _baseRenderer.WaitSync(id);
        }

        public void Dispose()
        {
            // Dispose must happen from the render thread, after all commands have completed.

            // Stop the GPU thread.
            _disposed = true;
            _gpuThread.Join();

            // Dispose the renderer.
            _baseRenderer.Dispose();

            // Dispose events.
            _frameComplete.Dispose();
            _galWorkAvailable.Dispose();
            _invokeRun.Dispose();

            Sync.Dispose();
        }
    }
}