aboutsummaryrefslogtreecommitdiff
path: root/Ryujinx.Common/XXHash128.cs
blob: edbc652f93c8101f6537dd02dbc39fc079a75a29 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
using System;
using System.Buffers.Binary;
using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;

namespace Ryujinx.Common
{
    public static class XXHash128
    {
        private const int StripeLen = 64;
        private const int AccNb = StripeLen / sizeof(ulong);
        private const int SecretConsumeRate = 8;
        private const int SecretLastAccStart = 7;
        private const int SecretMergeAccsStart = 11;
        private const int SecretSizeMin = 136;
        private const int MidSizeStartOffset = 3;
        private const int MidSizeLastOffset = 17;

        private const uint Prime32_1 = 0x9E3779B1U;
        private const uint Prime32_2 = 0x85EBCA77U;
        private const uint Prime32_3 = 0xC2B2AE3DU;
        private const uint Prime32_4 = 0x27D4EB2FU;
        private const uint Prime32_5 = 0x165667B1U;

        private const ulong Prime64_1 = 0x9E3779B185EBCA87UL;
        private const ulong Prime64_2 = 0xC2B2AE3D27D4EB4FUL;
        private const ulong Prime64_3 = 0x165667B19E3779F9UL;
        private const ulong Prime64_4 = 0x85EBCA77C2B2AE63UL;
        private const ulong Prime64_5 = 0x27D4EB2F165667C5UL;

        private static readonly ulong[] Xxh3InitAcc = new ulong[]
        {
            Prime32_3,
            Prime64_1,
            Prime64_2,
            Prime64_3,
            Prime64_4,
            Prime32_2,
            Prime64_5,
            Prime32_1
        };

        private static ReadOnlySpan<byte> Xxh3KSecret => new byte[]
        {
            0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
            0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
            0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
            0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
            0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
            0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
            0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
            0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
            0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
            0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
            0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
            0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e
        };

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Mult32To64(ulong x, ulong y)
        {
            return (ulong)(uint)x * (ulong)(uint)y;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static Hash128 Mult64To128(ulong lhs, ulong rhs)
        {
            ulong high = Math.BigMul(lhs, rhs, out ulong low);
            return new Hash128
            {
                Low = low,
                High = high
            };
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Mul128Fold64(ulong lhs, ulong rhs)
        {
            Hash128 product = Mult64To128(lhs, rhs);
            return product.Low ^ product.High;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong XorShift64(ulong v64, int shift)
        {
            Debug.Assert(0 <= shift && shift < 64);
            return v64 ^ (v64 >> shift);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Xxh3Avalanche(ulong h64)
        {
            h64 = XorShift64(h64, 37);
            h64 *= 0x165667919E3779F9UL;
            h64 = XorShift64(h64, 32);
            return h64;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Xxh64Avalanche(ulong h64)
        {
            h64 ^= h64 >> 33;
            h64 *= Prime64_2;
            h64 ^= h64 >> 29;
            h64 *= Prime64_3;
            h64 ^= h64 >> 32;
            return h64;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private unsafe static void Xxh3Accumulate512(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret)
        {
            if (Avx2.IsSupported)
            {
                fixed (ulong* pAcc = acc)
                {
                    fixed (byte* pInput = input, pSecret = secret)
                    {
                        Vector256<ulong>* xAcc = (Vector256<ulong>*)pAcc;
                        Vector256<byte>* xInput = (Vector256<byte>*)pInput;
                        Vector256<byte>* xSecret = (Vector256<byte>*)pSecret;

                        for (ulong i = 0; i < StripeLen / 32; i++)
                        {
                            Vector256<byte> dataVec = xInput[i];
                            Vector256<byte> keyVec = xSecret[i];
                            Vector256<byte> dataKey = Avx2.Xor(dataVec, keyVec);
                            Vector256<uint> dataKeyLo = Avx2.Shuffle(dataKey.AsUInt32(), 0b00110001);
                            Vector256<ulong> product = Avx2.Multiply(dataKey.AsUInt32(), dataKeyLo);
                            Vector256<uint> dataSwap = Avx2.Shuffle(dataVec.AsUInt32(), 0b01001110);
                            Vector256<ulong> sum = Avx2.Add(xAcc[i], dataSwap.AsUInt64());
                            xAcc[i] = Avx2.Add(product, sum);
                        }
                    }
                }
            }
            else if (Sse2.IsSupported)
            {
                fixed (ulong* pAcc = acc)
                {
                    fixed (byte* pInput = input, pSecret = secret)
                    {
                        Vector128<ulong>* xAcc = (Vector128<ulong>*)pAcc;
                        Vector128<byte>* xInput = (Vector128<byte>*)pInput;
                        Vector128<byte>* xSecret = (Vector128<byte>*)pSecret;

                        for (ulong i = 0; i < StripeLen / 16; i++)
                        {
                            Vector128<byte> dataVec = xInput[i];
                            Vector128<byte> keyVec = xSecret[i];
                            Vector128<byte> dataKey = Sse2.Xor(dataVec, keyVec);
                            Vector128<uint> dataKeyLo = Sse2.Shuffle(dataKey.AsUInt32(), 0b00110001);
                            Vector128<ulong> product = Sse2.Multiply(dataKey.AsUInt32(), dataKeyLo);
                            Vector128<uint> dataSwap = Sse2.Shuffle(dataVec.AsUInt32(), 0b01001110);
                            Vector128<ulong> sum = Sse2.Add(xAcc[i], dataSwap.AsUInt64());
                            xAcc[i] = Sse2.Add(product, sum);
                        }
                    }
                }
            }
            else
            {
                for (int i = 0; i < AccNb; i++)
                {
                    ulong dataVal = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(i * sizeof(ulong)));
                    ulong dataKey = dataVal ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(i * sizeof(ulong)));
                    acc[i ^ 1] += dataVal;
                    acc[i] += Mult32To64((uint)dataKey, dataKey >> 32);
                }
            }
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private unsafe static void Xxh3ScrambleAcc(Span<ulong> acc, ReadOnlySpan<byte> secret)
        {
            if (Avx2.IsSupported)
            {
                fixed (ulong* pAcc = acc)
                {
                    fixed (byte* pSecret = secret)
                    {
                        Vector256<uint> prime32 = Vector256.Create(Prime32_1);
                        Vector256<ulong>* xAcc = (Vector256<ulong>*)pAcc;
                        Vector256<byte>* xSecret = (Vector256<byte>*)pSecret;

                        for (ulong i = 0; i < StripeLen / 32; i++)
                        {
                            Vector256<ulong> accVec = xAcc[i];
                            Vector256<ulong> shifted = Avx2.ShiftRightLogical(accVec, 47);
                            Vector256<ulong> dataVec = Avx2.Xor(accVec, shifted);

                            Vector256<byte> keyVec = xSecret[i];
                            Vector256<uint> dataKey = Avx2.Xor(dataVec.AsUInt32(), keyVec.AsUInt32());

                            Vector256<uint> dataKeyHi = Avx2.Shuffle(dataKey.AsUInt32(), 0b00110001);
                            Vector256<ulong> prodLo = Avx2.Multiply(dataKey, prime32);
                            Vector256<ulong> prodHi = Avx2.Multiply(dataKeyHi, prime32);

                            xAcc[i] = Avx2.Add(prodLo, Avx2.ShiftLeftLogical(prodHi, 32));
                        }
                    }
                }
            }
            else if (Sse2.IsSupported)
            {
                fixed (ulong* pAcc = acc)
                {
                    fixed (byte* pSecret = secret)
                    {
                        Vector128<uint> prime32 = Vector128.Create(Prime32_1);
                        Vector128<ulong>* xAcc = (Vector128<ulong>*)pAcc;
                        Vector128<byte>* xSecret = (Vector128<byte>*)pSecret;

                        for (ulong i = 0; i < StripeLen / 16; i++)
                        {
                            Vector128<ulong> accVec = xAcc[i];
                            Vector128<ulong> shifted = Sse2.ShiftRightLogical(accVec, 47);
                            Vector128<ulong> dataVec = Sse2.Xor(accVec, shifted);

                            Vector128<byte> keyVec = xSecret[i];
                            Vector128<uint> dataKey = Sse2.Xor(dataVec.AsUInt32(), keyVec.AsUInt32());

                            Vector128<uint> dataKeyHi = Sse2.Shuffle(dataKey.AsUInt32(), 0b00110001);
                            Vector128<ulong> prodLo = Sse2.Multiply(dataKey, prime32);
                            Vector128<ulong> prodHi = Sse2.Multiply(dataKeyHi, prime32);

                            xAcc[i] = Sse2.Add(prodLo, Sse2.ShiftLeftLogical(prodHi, 32));
                        }
                    }
                }
            }
            else
            {
                for (int i = 0; i < AccNb; i++)
                {
                    ulong key64 = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(i * sizeof(ulong)));
                    ulong acc64 = acc[i];
                    acc64 = XorShift64(acc64, 47);
                    acc64 ^= key64;
                    acc64 *= Prime32_1;
                    acc[i] = acc64;
                }
            }
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static void Xxh3Accumulate(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, int nbStripes)
        {
            for (int n = 0; n < nbStripes; n++)
            {
                ReadOnlySpan<byte> inData = input.Slice(n * StripeLen);
                Xxh3Accumulate512(acc, inData, secret.Slice(n * SecretConsumeRate));
            }
        }

        private static void Xxh3HashLongInternalLoop(Span<ulong> acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret)
        {
            int nbStripesPerBlock = (secret.Length - StripeLen) / SecretConsumeRate;
            int blockLen = StripeLen * nbStripesPerBlock;
            int nbBlocks = (input.Length - 1) / blockLen;

            Debug.Assert(secret.Length >= SecretSizeMin);

            for (int n = 0; n < nbBlocks; n++)
            {
                Xxh3Accumulate(acc, input.Slice(n * blockLen), secret, nbStripesPerBlock);
                Xxh3ScrambleAcc(acc, secret.Slice(secret.Length - StripeLen));
            }

            Debug.Assert(input.Length > StripeLen);

            int nbStripes = (input.Length - 1 - (blockLen * nbBlocks)) / StripeLen;
            Debug.Assert(nbStripes <= (secret.Length / SecretConsumeRate));
            Xxh3Accumulate(acc, input.Slice(nbBlocks * blockLen), secret, nbStripes);

            ReadOnlySpan<byte> p = input.Slice(input.Length - StripeLen);
            Xxh3Accumulate512(acc, p, secret.Slice(secret.Length - StripeLen - SecretLastAccStart));
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Xxh3Mix2Accs(Span<ulong> acc, ReadOnlySpan<byte> secret)
        {
            return Mul128Fold64(
                acc[0] ^ BinaryPrimitives.ReadUInt64LittleEndian(secret),
                acc[1] ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(8)));
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static ulong Xxh3MergeAccs(Span<ulong> acc, ReadOnlySpan<byte> secret, ulong start)
        {
            ulong result64 = start;

            for (int i = 0; i < 4; i++)
            {
                result64 += Xxh3Mix2Accs(acc.Slice(2 * i), secret.Slice(16 * i));
            }

            return Xxh3Avalanche(result64);
        }

        [SkipLocalsInit]
        private static Hash128 Xxh3HashLong128bInternal(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret)
        {
            Span<ulong> acc = stackalloc ulong[AccNb];
            Xxh3InitAcc.CopyTo(acc);

            Xxh3HashLongInternalLoop(acc, input, secret);

            Debug.Assert(acc.Length == 8);
            Debug.Assert(secret.Length >= acc.Length * sizeof(ulong) + SecretMergeAccsStart);

            return new Hash128
            {
                Low = Xxh3MergeAccs(acc, secret.Slice(SecretMergeAccsStart), (ulong)input.Length * Prime64_1),
                High = Xxh3MergeAccs(
                    acc,
                    secret.Slice(secret.Length - acc.Length * sizeof(ulong) - SecretMergeAccsStart),
                    ~((ulong)input.Length * Prime64_2))
            };
        }

        private static Hash128 Xxh3Len1To3128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(1 <= input.Length && input.Length <= 3);

            byte c1 = input[0];
            byte c2 = input[input.Length >> 1];
            byte c3 = input[^1];

            uint combinedL = ((uint)c1 << 16) | ((uint)c2 << 24) | c3 | ((uint)input.Length << 8);
            uint combinedH = BitOperations.RotateLeft(BinaryPrimitives.ReverseEndianness(combinedL), 13);
            ulong bitFlipL = (BinaryPrimitives.ReadUInt32LittleEndian(secret) ^ BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(4))) + seed;
            ulong bitFlipH = (BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(8)) ^ BinaryPrimitives.ReadUInt32LittleEndian(secret.Slice(12))) - seed;
            ulong keyedLo = combinedL ^ bitFlipL;
            ulong keyedHi = combinedH ^ bitFlipH;

            return new Hash128
            {
                Low = Xxh64Avalanche(keyedLo),
                High = Xxh64Avalanche(keyedHi)
            };
        }

        private static Hash128 Xxh3Len4To8128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(4 <= input.Length && input.Length <= 8);

            seed ^= BinaryPrimitives.ReverseEndianness((uint)seed) << 32;

            uint inputLo = BinaryPrimitives.ReadUInt32LittleEndian(input);
            uint inputHi = BinaryPrimitives.ReadUInt32LittleEndian(input.Slice(input.Length - 4));
            ulong input64 = inputLo + ((ulong)inputHi << 32);
            ulong bitFlip = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(16)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(24))) + seed;
            ulong keyed = input64 ^ bitFlip;

            Hash128 m128 = Mult64To128(keyed, Prime64_1 + ((ulong)input.Length << 2));

            m128.High += m128.Low << 1;
            m128.Low ^= m128.High >> 3;

            m128.Low = XorShift64(m128.Low, 35);
            m128.Low *= 0x9FB21C651E98DF25UL;
            m128.Low = XorShift64(m128.Low, 28);
            m128.High = Xxh3Avalanche(m128.High);
            return m128;
        }

        private static Hash128 Xxh3Len9To16128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(9 <= input.Length && input.Length <= 16);

            ulong bitFlipL = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(32)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(40))) - seed;
            ulong bitFlipH = (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(48)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(56))) + seed;
            ulong inputLo = BinaryPrimitives.ReadUInt64LittleEndian(input);
            ulong inputHi = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(input.Length - 8));

            Hash128 m128 = Mult64To128(inputLo ^ inputHi ^ bitFlipL, Prime64_1);
            m128.Low += ((ulong)input.Length - 1) << 54;
            inputHi ^= bitFlipH;
            m128.High += inputHi + Mult32To64((uint)inputHi, Prime32_2 - 1);
            m128.Low ^= BinaryPrimitives.ReverseEndianness(m128.High);

            Hash128 h128 = Mult64To128(m128.Low, Prime64_2);
            h128.High += m128.High * Prime64_2;
            h128.Low = Xxh3Avalanche(h128.Low);
            h128.High = Xxh3Avalanche(h128.High);
            return h128;
        }

        private static Hash128 Xxh3Len0To16128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(input.Length <= 16);

            if (input.Length > 8)
            {
                return Xxh3Len9To16128b(input, secret, seed);
            }
            else if (input.Length >= 4)
            {
                return Xxh3Len4To8128b(input, secret, seed);
            }
            else if (input.Length != 0)
            {
                return Xxh3Len1To3128b(input, secret, seed);
            }
            else
            {
                Hash128 h128 = new Hash128();
                ulong bitFlipL = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(64)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(72));
                ulong bitFlipH = BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(80)) ^ BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(88));
                h128.Low = Xxh64Avalanche(seed ^ bitFlipL);
                h128.High = Xxh64Avalanche(seed ^ bitFlipH);
                return h128;
            }
        }

        private static ulong Xxh3Mix16b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            ulong inputLo = BinaryPrimitives.ReadUInt64LittleEndian(input);
            ulong inputHi = BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(8));
            return Mul128Fold64(
                inputLo ^ (BinaryPrimitives.ReadUInt64LittleEndian(secret) + seed),
                inputHi ^ (BinaryPrimitives.ReadUInt64LittleEndian(secret.Slice(8)) - seed));
        }

        private static Hash128 Xxh128Mix32b(Hash128 acc, ReadOnlySpan<byte> input, ReadOnlySpan<byte> input2, ReadOnlySpan<byte> secret, ulong seed)
        {
            acc.Low += Xxh3Mix16b(input, secret, seed);
            acc.Low ^= BinaryPrimitives.ReadUInt64LittleEndian(input2) + BinaryPrimitives.ReadUInt64LittleEndian(input2.Slice(8));
            acc.High += Xxh3Mix16b(input2, secret.Slice(16), seed);
            acc.High ^= BinaryPrimitives.ReadUInt64LittleEndian(input) + BinaryPrimitives.ReadUInt64LittleEndian(input.Slice(8));
            return acc;
        }

        private static Hash128 Xxh3Len17To128128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(secret.Length >= SecretSizeMin);
            Debug.Assert(16 < input.Length && input.Length <= 128);

            Hash128 acc = new Hash128
            {
                Low = (ulong)input.Length * Prime64_1,
                High = 0
            };

            if (input.Length > 32)
            {
                if (input.Length > 64)
                {
                    if (input.Length > 96)
                    {
                        acc = Xxh128Mix32b(acc, input.Slice(48), input.Slice(input.Length - 64), secret.Slice(96), seed);
                    }
                    acc = Xxh128Mix32b(acc, input.Slice(32), input.Slice(input.Length - 48), secret.Slice(64), seed);
                }
                acc = Xxh128Mix32b(acc, input.Slice(16), input.Slice(input.Length - 32), secret.Slice(32), seed);
            }
            acc = Xxh128Mix32b(acc, input, input.Slice(input.Length - 16), secret, seed);

            Hash128 h128 = new Hash128
            {
                Low = acc.Low + acc.High,
                High = acc.Low * Prime64_1 + acc.High * Prime64_4 + ((ulong)input.Length - seed) * Prime64_2
            };
            h128.Low = Xxh3Avalanche(h128.Low);
            h128.High = 0UL - Xxh3Avalanche(h128.High);
            return h128;
        }

        private static Hash128 Xxh3Len129To240128b(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(secret.Length >= SecretSizeMin);
            Debug.Assert(128 < input.Length && input.Length <= 240);

            Hash128 acc = new Hash128();

            int nbRounds = input.Length / 32;
            acc.Low = (ulong)input.Length * Prime64_1;
            acc.High = 0;

            for (int i = 0; i < 4; i++)
            {
                acc = Xxh128Mix32b(acc, input.Slice(32 * i), input.Slice(32 * i + 16), secret.Slice(32 * i), seed);
            }

            acc.Low = Xxh3Avalanche(acc.Low);
            acc.High = Xxh3Avalanche(acc.High);
            Debug.Assert(nbRounds >= 4);

            for (int i = 4; i < nbRounds; i++)
            {
                acc = Xxh128Mix32b(acc, input.Slice(32 * i), input.Slice(32 * i + 16), secret.Slice(MidSizeStartOffset + 32 * (i - 4)), seed);
            }

            acc = Xxh128Mix32b(acc, input.Slice(input.Length - 16), input.Slice(input.Length - 32), secret.Slice(SecretSizeMin - MidSizeLastOffset - 16), 0UL - seed);

            Hash128 h128 = new Hash128
            {
                Low = acc.Low + acc.High,
                High = acc.Low * Prime64_1 + acc.High * Prime64_4 + ((ulong)input.Length - seed) * Prime64_2
            };
            h128.Low = Xxh3Avalanche(h128.Low);
            h128.High = 0UL - Xxh3Avalanche(h128.High);
            return h128;
        }

        private static Hash128 Xxh3128bitsInternal(ReadOnlySpan<byte> input, ReadOnlySpan<byte> secret, ulong seed)
        {
            Debug.Assert(secret.Length >= SecretSizeMin);

            if (input.Length <= 16)
            {
                return Xxh3Len0To16128b(input, secret, seed);
            }
            else if (input.Length <= 128)
            {
                return Xxh3Len17To128128b(input, secret, seed);
            }
            else if (input.Length <= 240)
            {
                return Xxh3Len129To240128b(input, secret, seed);
            }
            else
            {
                return Xxh3HashLong128bInternal(input, secret);
            }
        }

        public static Hash128 ComputeHash(ReadOnlySpan<byte> input)
        {
            return Xxh3128bitsInternal(input, Xxh3KSecret, 0UL);
        }
    }
}