aboutsummaryrefslogtreecommitdiff
path: root/src/core/hw/aes/key.cpp
blob: 42fa562ebfc3c45b5423018702f4e1639e5706ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <optional>
#include <sstream>
#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/stream.hpp>
#include "common/common_paths.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/hle/service/fs/archive.h"
#include "core/hw/aes/arithmetic128.h"
#include "core/hw/aes/key.h"
#include "core/hw/rsa/rsa.h"

namespace HW::AES {

namespace {

// The generator constant was calculated using the 0x39 KeyX and KeyY retrieved from a 3DS and the
// normal key dumped from a Wii U solving the equation:
// NormalKey = (((KeyX ROL 2) XOR KeyY) + constant) ROL 87
// On a real 3DS the generation for the normal key is hardware based, and thus the constant can't
// get dumped. Generated normal keys are also not accessible on a 3DS. The used formula for
// calculating the constant is a software implementation of what the hardware generator does.
constexpr AESKey generator_constant = {{0x1F, 0xF9, 0xE9, 0xAA, 0xC5, 0xFE, 0x04, 0x08, 0x02, 0x45,
                                        0x91, 0xDC, 0x5D, 0x52, 0x76, 0x8A}};

AESKey HexToKey(const std::string& hex) {
    if (hex.size() < 32) {
        throw std::invalid_argument("hex string is too short");
    }

    AESKey key;
    for (std::size_t i = 0; i < key.size(); ++i) {
        key[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), nullptr, 16));
    }

    return key;
}

std::vector<u8> HexToVector(const std::string& hex) {
    std::vector<u8> vector(hex.size() / 2);
    for (std::size_t i = 0; i < vector.size(); ++i) {
        vector[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), nullptr, 16));
    }

    return vector;
}

std::optional<std::size_t> ParseCommonKeyName(const std::string& full_name) {
    std::size_t index;
    int end;
    if (std::sscanf(full_name.c_str(), "common%zd%n", &index, &end) == 1 &&
        end == static_cast<int>(full_name.size())) {
        return index;
    } else {
        return std::nullopt;
    }
}

std::optional<std::pair<std::size_t, std::string>> ParseNfcSecretName(
    const std::string& full_name) {
    std::size_t index;
    int end;
    if (std::sscanf(full_name.c_str(), "nfcSecret%zd%n", &index, &end) == 1) {
        return std::make_pair(index, full_name.substr(end));
    } else {
        return std::nullopt;
    }
}

std::optional<std::pair<std::size_t, char>> ParseKeySlotName(const std::string& full_name) {
    std::size_t slot;
    char type;
    int end;
    if (std::sscanf(full_name.c_str(), "slot0x%zXKey%c%n", &slot, &type, &end) == 2 &&
        end == static_cast<int>(full_name.size())) {
        return std::make_pair(slot, type);
    } else {
        return std::nullopt;
    }
}

struct KeySlot {
    std::optional<AESKey> x;
    std::optional<AESKey> y;
    std::optional<AESKey> normal;

    void SetKeyX(std::optional<AESKey> key) {
        x = key;
        GenerateNormalKey();
    }

    void SetKeyY(std::optional<AESKey> key) {
        y = key;
        GenerateNormalKey();
    }

    void SetNormalKey(std::optional<AESKey> key) {
        normal = key;
    }

    void GenerateNormalKey() {
        if (x && y) {
            normal = Lrot128(Add128(Xor128(Lrot128(*x, 2), *y), generator_constant), 87);
        } else {
            normal.reset();
        }
    }

    void Clear() {
        x.reset();
        y.reset();
        normal.reset();
    }
};

std::array<KeySlot, KeySlotID::MaxKeySlotID> key_slots;
std::array<std::optional<AESKey>, MaxCommonKeySlot> common_key_y_slots;
std::array<std::optional<AESKey>, NumDlpNfcKeyYs> dlp_nfc_key_y_slots;
std::array<NfcSecret, NumNfcSecrets> nfc_secrets;
AESIV nfc_iv;

struct KeyDesc {
    char key_type;
    std::size_t slot_id;
    // This key is identical to the key with the same key_type and slot_id -1
    bool same_as_before;
};

void LoadBootromKeys() {
    constexpr std::array<KeyDesc, 80> keys = {
        {{'X', 0x2C, false}, {'X', 0x2D, true},  {'X', 0x2E, true},  {'X', 0x2F, true},
         {'X', 0x30, false}, {'X', 0x31, true},  {'X', 0x32, true},  {'X', 0x33, true},
         {'X', 0x34, false}, {'X', 0x35, true},  {'X', 0x36, true},  {'X', 0x37, true},
         {'X', 0x38, false}, {'X', 0x39, true},  {'X', 0x3A, true},  {'X', 0x3B, true},
         {'X', 0x3C, false}, {'X', 0x3D, false}, {'X', 0x3E, false}, {'X', 0x3F, false},
         {'Y', 0x4, false},  {'Y', 0x5, false},  {'Y', 0x6, false},  {'Y', 0x7, false},
         {'Y', 0x8, false},  {'Y', 0x9, false},  {'Y', 0xA, false},  {'Y', 0xB, false},
         {'N', 0xC, false},  {'N', 0xD, true},   {'N', 0xE, true},   {'N', 0xF, true},
         {'N', 0x10, false}, {'N', 0x11, true},  {'N', 0x12, true},  {'N', 0x13, true},
         {'N', 0x14, false}, {'N', 0x15, false}, {'N', 0x16, false}, {'N', 0x17, false},
         {'N', 0x18, false}, {'N', 0x19, true},  {'N', 0x1A, true},  {'N', 0x1B, true},
         {'N', 0x1C, false}, {'N', 0x1D, true},  {'N', 0x1E, true},  {'N', 0x1F, true},
         {'N', 0x20, false}, {'N', 0x21, true},  {'N', 0x22, true},  {'N', 0x23, true},
         {'N', 0x24, false}, {'N', 0x25, true},  {'N', 0x26, true},  {'N', 0x27, true},
         {'N', 0x28, true},  {'N', 0x29, false}, {'N', 0x2A, false}, {'N', 0x2B, false},
         {'N', 0x2C, false}, {'N', 0x2D, true},  {'N', 0x2E, true},  {'N', 0x2F, true},
         {'N', 0x30, false}, {'N', 0x31, true},  {'N', 0x32, true},  {'N', 0x33, true},
         {'N', 0x34, false}, {'N', 0x35, true},  {'N', 0x36, true},  {'N', 0x37, true},
         {'N', 0x38, false}, {'N', 0x39, true},  {'N', 0x3A, true},  {'N', 0x3B, true},
         {'N', 0x3C, true},  {'N', 0x3D, false}, {'N', 0x3E, false}, {'N', 0x3F, false}}};

    // Bootrom sets all these keys when executed, but later some of the normal keys get overwritten
    // by other applications e.g. process9. These normal keys thus aren't used by any application
    // and have no value for emulation

    const std::string filepath = FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + BOOTROM9;
    auto file = FileUtil::IOFile(filepath, "rb");
    if (!file) {
        return;
    }

    const std::size_t length = file.GetSize();
    if (length != 65536) {
        LOG_ERROR(HW_AES, "Bootrom9 size is wrong: {}", length);
        return;
    }

    constexpr std::size_t KEY_SECTION_START = 55760;
    file.Seek(KEY_SECTION_START, SEEK_SET); // Jump to the key section

    AESKey new_key;
    for (const auto& key : keys) {
        if (!key.same_as_before) {
            file.ReadArray(new_key.data(), new_key.size());
            if (!file) {
                LOG_ERROR(HW_AES, "Reading from Bootrom9 failed");
                return;
            }
        }

        LOG_DEBUG(HW_AES, "Loaded Slot{:#02x} Key{} from Bootrom9.", key.slot_id, key.key_type);

        switch (key.key_type) {
        case 'X':
            key_slots.at(key.slot_id).SetKeyX(new_key);
            break;
        case 'Y':
            key_slots.at(key.slot_id).SetKeyY(new_key);
            break;
        case 'N':
            key_slots.at(key.slot_id).SetNormalKey(new_key);
            break;
        default:
            LOG_ERROR(HW_AES, "Invalid key type {}", key.key_type);
            break;
        }
    }
}

void LoadPresetKeys() {
    const std::string filepath = FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + AES_KEYS;
    FileUtil::CreateFullPath(filepath); // Create path if not already created

    boost::iostreams::stream<boost::iostreams::file_descriptor_source> file;
    FileUtil::OpenFStream<std::ios_base::in>(file, filepath);
    if (!file.is_open()) {
        return;
    }

    while (!file.eof()) {
        std::string line;
        std::getline(file, line);

        // Ignore empty or commented lines.
        if (line.empty() || line.starts_with("#")) {
            continue;
        }

        const auto parts = Common::SplitString(line, '=');
        if (parts.size() != 2) {
            LOG_ERROR(HW_AES, "Failed to parse {}", line);
            continue;
        }

        const std::string& name = parts[0];

        const auto nfc_secret = ParseNfcSecretName(name);
        if (nfc_secret) {
            auto value = HexToVector(parts[1]);
            if (nfc_secret->first >= nfc_secrets.size()) {
                LOG_ERROR(HW_AES, "Invalid NFC secret index {}", nfc_secret->first);
            } else if (nfc_secret->second == "Phrase") {
                nfc_secrets[nfc_secret->first].phrase = value;
            } else if (nfc_secret->second == "Seed") {
                nfc_secrets[nfc_secret->first].seed = value;
            } else if (nfc_secret->second == "HmacKey") {
                nfc_secrets[nfc_secret->first].hmac_key = value;
            } else {
                LOG_ERROR(HW_AES, "Invalid NFC secret '{}'", name);
            }
            continue;
        }

        AESKey key;
        try {
            key = HexToKey(parts[1]);
        } catch (const std::logic_error& e) {
            LOG_ERROR(HW_AES, "Invalid key {}: {}", parts[1], e.what());
            continue;
        }

        const auto common_key = ParseCommonKeyName(name);
        if (common_key) {
            if (common_key >= common_key_y_slots.size()) {
                LOG_ERROR(HW_AES, "Invalid common key index {}", common_key.value());
            } else {
                common_key_y_slots[common_key.value()] = key;
            }
            continue;
        }

        if (name == "dlpKeyY") {
            dlp_nfc_key_y_slots[DlpNfcKeyY::Dlp] = key;
            continue;
        }

        if (name == "nfcKeyY") {
            dlp_nfc_key_y_slots[DlpNfcKeyY::Nfc] = key;
            continue;
        }

        if (name == "nfcIv") {
            nfc_iv = key;
            continue;
        }

        const auto key_slot = ParseKeySlotName(name);
        if (!key_slot) {
            LOG_ERROR(HW_AES, "Invalid key name '{}'", name);
            continue;
        }

        if (key_slot->first >= MaxKeySlotID) {
            LOG_ERROR(HW_AES, "Out of range key slot ID {:#X}", key_slot->first);
            continue;
        }

        switch (key_slot->second) {
        case 'X':
            key_slots.at(key_slot->first).SetKeyX(key);
            break;
        case 'Y':
            key_slots.at(key_slot->first).SetKeyY(key);
            break;
        case 'N':
            key_slots.at(key_slot->first).SetNormalKey(key);
            break;
        default:
            LOG_ERROR(HW_AES, "Invalid key type '{}'", key_slot->second);
            break;
        }
    }
}

} // namespace

void InitKeys(bool force) {
    static bool initialized = false;
    if (initialized && !force) {
        return;
    }
    initialized = true;
    HW::RSA::InitSlots();
    LoadBootromKeys();
    LoadPresetKeys();
}

void SetKeyX(std::size_t slot_id, const AESKey& key) {
    key_slots.at(slot_id).SetKeyX(key);
}

void SetKeyY(std::size_t slot_id, const AESKey& key) {
    key_slots.at(slot_id).SetKeyY(key);
}

void SetNormalKey(std::size_t slot_id, const AESKey& key) {
    key_slots.at(slot_id).SetNormalKey(key);
}

bool IsKeyXAvailable(std::size_t slot_id) {
    return key_slots.at(slot_id).x.has_value();
}

bool IsNormalKeyAvailable(std::size_t slot_id) {
    return key_slots.at(slot_id).normal.has_value();
}

AESKey GetNormalKey(std::size_t slot_id) {
    return key_slots.at(slot_id).normal.value_or(AESKey{});
}

void SelectCommonKeyIndex(u8 index) {
    key_slots[KeySlotID::TicketCommonKey].SetKeyY(common_key_y_slots.at(index));
}

void SelectDlpNfcKeyYIndex(u8 index) {
    key_slots[KeySlotID::DLPNFCDataKey].SetKeyY(dlp_nfc_key_y_slots.at(index));
}

bool NfcSecretsAvailable() {
    auto missing_secret =
        std::find_if(nfc_secrets.begin(), nfc_secrets.end(), [](auto& nfc_secret) {
            return nfc_secret.phrase.empty() || nfc_secret.seed.empty() ||
                   nfc_secret.hmac_key.empty();
        });
    SelectDlpNfcKeyYIndex(DlpNfcKeyY::Nfc);
    return IsNormalKeyAvailable(KeySlotID::DLPNFCDataKey) && missing_secret == nfc_secrets.end();
}

const NfcSecret& GetNfcSecret(NfcSecretId secret_id) {
    return nfc_secrets[secret_id];
}

const AESIV& GetNfcIv() {
    return nfc_iv;
}

} // namespace HW::AES