aboutsummaryrefslogtreecommitdiff
path: root/src/core/hle/service/nwm/uds_data.cpp
blob: abf2b36f93caca7e898c1aab56e0fd8fe70c2dd4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1

#include <algorithm>
#include <cstring>
#include <cryptopp/aes.h>
#include <cryptopp/ccm.h>
#include <cryptopp/filters.h>
#include <cryptopp/md5.h>
#include <cryptopp/modes.h>
#include "core/hle/service/nwm/nwm_uds.h"
#include "core/hle/service/nwm/uds_data.h"
#include "core/hw/aes/key.h"

namespace Service::NWM {

using MacAddress = std::array<u8, 6>;

/*
 * Generates a SNAP-enabled 802.2 LLC header for the specified protocol.
 * @returns a buffer with the bytes of the generated header.
 */
static std::vector<u8> GenerateLLCHeader(EtherType protocol) {
    LLCHeader header{};
    header.protocol = protocol;

    std::vector<u8> buffer(sizeof(header));
    std::memcpy(buffer.data(), &header, sizeof(header));

    return buffer;
}

/*
 * Generates a Nintendo UDS SecureData header with the specified parameters.
 * @returns a buffer with the bytes of the generated header.
 */
static std::vector<u8> GenerateSecureDataHeader(u16 data_size, u8 channel, u16 dest_node_id,
                                                u16 src_node_id, u16 sequence_number) {
    SecureDataHeader header{};
    header.protocol_size = data_size + sizeof(SecureDataHeader);
    // Note: This size includes everything except the first 4 bytes of the structure,
    // reinforcing the hypotheses that the first 4 bytes are actually the header of
    // another container protocol.
    header.securedata_size = data_size + sizeof(SecureDataHeader) - 4;
    // Frames sent by the emulated application are never UDS management frames
    header.is_management = 0;
    header.data_channel = channel;
    header.sequence_number = sequence_number;
    header.dest_node_id = dest_node_id;
    header.src_node_id = src_node_id;

    std::vector<u8> buffer(sizeof(header));
    std::memcpy(buffer.data(), &header, sizeof(header));

    return buffer;
}

/*
 * Calculates the CTR used for the AES-CTR process that calculates
 * the CCMP crypto key for data frames.
 * @returns The CTR used for data frames crypto key generation.
 */
static std::array<u8, CryptoPP::Weak::MD5::DIGESTSIZE> GetDataCryptoCTR(
    const NetworkInfo& network_info) {
    DataFrameCryptoCTR data{};

    data.host_mac = network_info.host_mac_address;
    data.wlan_comm_id = network_info.wlan_comm_id;
    data.id = network_info.id;
    data.network_id = network_info.network_id;

    std::array<u8, CryptoPP::Weak::MD5::DIGESTSIZE> hash;
    CryptoPP::Weak::MD5().CalculateDigest(hash.data(), reinterpret_cast<u8*>(&data), sizeof(data));

    return hash;
}

/*
 * Generates the key used for encrypting the 802.11 data frames generated by UDS.
 * @returns The key used for data frames crypto.
 */
[[maybe_unused]] static std::array<u8, CryptoPP::AES::BLOCKSIZE> GenerateDataCCMPKey(
    std::span<const u8> passphrase, const NetworkInfo& network_info) {
    // Calculate the MD5 hash of the input passphrase.
    std::array<u8, CryptoPP::Weak::MD5::DIGESTSIZE> passphrase_hash;
    CryptoPP::Weak::MD5().CalculateDigest(passphrase_hash.data(), passphrase.data(),
                                          passphrase.size());

    std::array<u8, CryptoPP::AES::BLOCKSIZE> ccmp_key;

    // The CCMP key is the result of encrypting the MD5 hash of the passphrase with AES-CTR using
    // keyslot 0x2D.
    using CryptoPP::AES;
    std::array<u8, CryptoPP::Weak::MD5::DIGESTSIZE> counter = GetDataCryptoCTR(network_info);
    std::array<u8, AES::BLOCKSIZE> key = HW::AES::GetNormalKey(HW::AES::KeySlotID::UDSDataKey);
    CryptoPP::CTR_Mode<AES>::Encryption aes;
    aes.SetKeyWithIV(key.data(), AES::BLOCKSIZE, counter.data());
    aes.ProcessData(ccmp_key.data(), passphrase_hash.data(), passphrase_hash.size());

    return ccmp_key;
}

/*
 * Generates the Additional Authenticated Data (AAD) for an UDS 802.11 encrypted data frame.
 * @returns a buffer with the bytes of the AAD.
 */
static std::vector<u8> GenerateCCMPAAD(const MacAddress& sender, const MacAddress& receiver,
                                       const MacAddress& bssid, u16 frame_control) {
    // Reference: IEEE 802.11-2007

    // 8.3.3.3.2 Construct AAD (22-30 bytes)
    // The AAD is constructed from the MPDU header. The AAD does not include the header Duration
    // field, because the Duration field value can change due to normal IEEE 802.11 operation (e.g.,
    // a rate change during retransmission). For similar reasons, several subfields in the Frame
    // Control field are masked to 0.
    struct {
        u16_be FC; // MPDU Frame Control field
        MacAddress A1;
        MacAddress A2;
        MacAddress A3;
        u16_be SC; // MPDU Sequence Control field
    } aad_struct{};

    constexpr u16 AADFrameControlMask = 0x8FC7;
    aad_struct.FC = frame_control & AADFrameControlMask;
    aad_struct.SC = 0;

    bool to_ds = (frame_control & (1 << 0)) != 0;
    bool from_ds = (frame_control & (1 << 1)) != 0;
    // In the 802.11 standard, ToDS = 1 and FromDS = 1 is a valid configuration,
    // however, the 3DS doesn't seem to transmit frames with such combination.
    ASSERT_MSG(to_ds != from_ds, "Invalid combination");

    // The meaning of the address fields depends on the ToDS and FromDS fields.
    if (from_ds) {
        aad_struct.A1 = receiver;
        aad_struct.A2 = bssid;
        aad_struct.A3 = sender;
    }

    if (to_ds) {
        aad_struct.A1 = bssid;
        aad_struct.A2 = sender;
        aad_struct.A3 = receiver;
    }

    std::vector<u8> aad(sizeof(aad_struct));
    std::memcpy(aad.data(), &aad_struct, sizeof(aad_struct));

    return aad;
}

/*
 * Decrypts the payload of an encrypted 802.11 data frame using the specified key.
 * @returns The decrypted payload.
 */
[[maybe_unused]] static std::vector<u8> DecryptDataFrame(
    std::span<const u8> encrypted_payload, const std::array<u8, CryptoPP::AES::BLOCKSIZE>& ccmp_key,
    const MacAddress& sender, const MacAddress& receiver, const MacAddress& bssid,
    u16 sequence_number, u16 frame_control) {

    // Reference: IEEE 802.11-2007

    std::vector<u8> aad = GenerateCCMPAAD(sender, receiver, bssid, frame_control);

    std::vector<u8> packet_number{0,
                                  0,
                                  0,
                                  0,
                                  static_cast<u8>((sequence_number >> 8) & 0xFF),
                                  static_cast<u8>(sequence_number & 0xFF)};

    // 8.3.3.3.3 Construct CCM nonce (13 bytes)
    std::vector<u8> nonce;
    nonce.push_back(0);                                                    // priority
    nonce.insert(nonce.end(), sender.begin(), sender.end());               // Address 2
    nonce.insert(nonce.end(), packet_number.begin(), packet_number.end()); // PN

    try {
        CryptoPP::CCM<CryptoPP::AES, 8>::Decryption d;
        d.SetKeyWithIV(ccmp_key.data(), ccmp_key.size(), nonce.data(), nonce.size());
        d.SpecifyDataLengths(aad.size(), encrypted_payload.size() - 8, 0);

        CryptoPP::AuthenticatedDecryptionFilter df(
            d, nullptr,
            CryptoPP::AuthenticatedDecryptionFilter::MAC_AT_END |
                CryptoPP::AuthenticatedDecryptionFilter::THROW_EXCEPTION);
        // put aad
        df.ChannelPut(CryptoPP::AAD_CHANNEL, aad.data(), aad.size());

        // put cipher with mac
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL, encrypted_payload.data(),
                      encrypted_payload.size() - 8);
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL,
                      encrypted_payload.data() + encrypted_payload.size() - 8, 8);

        df.ChannelMessageEnd(CryptoPP::AAD_CHANNEL);
        df.ChannelMessageEnd(CryptoPP::DEFAULT_CHANNEL);
        df.SetRetrievalChannel(CryptoPP::DEFAULT_CHANNEL);

        std::size_t size = df.MaxRetrievable();

        std::vector<u8> pdata(size);
        df.Get(pdata.data(), size);
        return pdata;
    } catch (CryptoPP::Exception&) {
        LOG_ERROR(Service_NWM, "failed to decrypt");
    }

    return {};
}

/*
 * Encrypts the payload of an 802.11 data frame using the specified key.
 * @returns The encrypted payload.
 */
[[maybe_unused]] static std::vector<u8> EncryptDataFrame(
    std::span<const u8> payload, const std::array<u8, CryptoPP::AES::BLOCKSIZE>& ccmp_key,
    const MacAddress& sender, const MacAddress& receiver, const MacAddress& bssid,
    u16 sequence_number, u16 frame_control) {
    // Reference: IEEE 802.11-2007

    std::vector<u8> aad = GenerateCCMPAAD(sender, receiver, bssid, frame_control);

    std::vector<u8> packet_number{0,
                                  0,
                                  0,
                                  0,
                                  static_cast<u8>((sequence_number >> 8) & 0xFF),
                                  static_cast<u8>(sequence_number & 0xFF)};

    // 8.3.3.3.3 Construct CCM nonce (13 bytes)
    std::vector<u8> nonce;
    nonce.push_back(0);                                                    // priority
    nonce.insert(nonce.end(), sender.begin(), sender.end());               // Address 2
    nonce.insert(nonce.end(), packet_number.begin(), packet_number.end()); // PN

    try {
        CryptoPP::CCM<CryptoPP::AES, 8>::Encryption d;
        d.SetKeyWithIV(ccmp_key.data(), ccmp_key.size(), nonce.data(), nonce.size());
        d.SpecifyDataLengths(aad.size(), payload.size(), 0);

        CryptoPP::AuthenticatedEncryptionFilter df(d);
        // put aad
        df.ChannelPut(CryptoPP::AAD_CHANNEL, aad.data(), aad.size());
        df.ChannelMessageEnd(CryptoPP::AAD_CHANNEL);

        // put plaintext
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL, payload.data(), payload.size());
        df.ChannelMessageEnd(CryptoPP::DEFAULT_CHANNEL);

        df.SetRetrievalChannel(CryptoPP::DEFAULT_CHANNEL);

        std::size_t size = df.MaxRetrievable();

        std::vector<u8> cipher(size);
        df.Get(cipher.data(), size);
        return cipher;
    } catch (CryptoPP::Exception&) {
        LOG_ERROR(Service_NWM, "failed to encrypt");
    }

    return {};
}

std::vector<u8> GenerateDataPayload(std::span<const u8> data, u8 channel, u16 dest_node,
                                    u16 src_node, u16 sequence_number) {
    std::vector<u8> buffer = GenerateLLCHeader(EtherType::SecureData);
    std::vector<u8> securedata_header = GenerateSecureDataHeader(
        static_cast<u16>(data.size()), channel, dest_node, src_node, sequence_number);

    buffer.insert(buffer.end(), securedata_header.begin(), securedata_header.end());
    buffer.insert(buffer.end(), data.begin(), data.end());
    return buffer;
}

SecureDataHeader ParseSecureDataHeader(std::span<const u8> data) {
    SecureDataHeader header;

    // Skip the LLC header
    std::memcpy(&header, data.data() + sizeof(LLCHeader), sizeof(header));

    return header;
}

std::vector<u8> GenerateEAPoLStartFrame(u16 association_id, const NodeInfo& node_info) {
    EAPoLStartPacket eapol_start{};
    eapol_start.association_id = association_id;
    eapol_start.node.friend_code_seed = node_info.friend_code_seed;

    std::copy(node_info.username.begin(), node_info.username.end(),
              eapol_start.node.username.begin());

    // Note: The network_node_id and unknown bytes seem to be uninitialized in the NWM module.
    // TODO(B3N30): The last 8 bytes seem to have a fixed value of 07 88 15 00 04 e9 13 00 in
    // EAPoL-Start packets from different 3DSs to the same host during a Super Smash Bros. 4 game.
    // Find out what that means.

    std::vector<u8> eapol_buffer(sizeof(EAPoLStartPacket));
    std::memcpy(eapol_buffer.data(), &eapol_start, sizeof(eapol_start));

    std::vector<u8> buffer = GenerateLLCHeader(EtherType::EAPoL);
    buffer.reserve(buffer.size() + sizeof(EAPoLStartPacket));
    buffer.insert(buffer.end(), eapol_buffer.begin(), eapol_buffer.end());
    return buffer;
}

EtherType GetFrameEtherType(std::span<const u8> frame) {
    LLCHeader header;
    std::memcpy(&header, frame.data(), sizeof(header));
    return header.protocol;
}

u16 GetEAPoLFrameType(std::span<const u8> frame) {
    // Ignore the LLC header
    u16_be eapol_type;
    std::memcpy(&eapol_type, frame.data() + sizeof(LLCHeader), sizeof(eapol_type));
    return eapol_type;
}

NodeInfo DeserializeNodeInfoFromFrame(std::span<const u8> frame) {
    EAPoLStartPacket eapol_start;

    // Skip the LLC header
    std::memcpy(&eapol_start, frame.data() + sizeof(LLCHeader), sizeof(eapol_start));

    NodeInfo node{};
    node.friend_code_seed = eapol_start.node.friend_code_seed;

    std::copy(eapol_start.node.username.begin(), eapol_start.node.username.end(),
              node.username.begin());

    return node;
}

NodeInfo DeserializeNodeInfo(const EAPoLNodeInfo& node) {
    NodeInfo node_info{};
    node_info.friend_code_seed = node.friend_code_seed;
    node_info.network_node_id = node.network_node_id;

    std::copy(node.username.begin(), node.username.end(), node_info.username.begin());

    return node_info;
}

std::vector<u8> GenerateEAPoLLogoffFrame(const MacAddress& mac_address, u16 network_node_id,
                                         const NodeList& nodes, u8 max_nodes, u8 total_nodes) {
    EAPoLLogoffPacket eapol_logoff{};
    eapol_logoff.assigned_node_id = network_node_id;
    eapol_logoff.connected_nodes = total_nodes;
    eapol_logoff.max_nodes = max_nodes;

    for (std::size_t index = 0; index < max_nodes; ++index) {
        const auto& node_info = nodes[index];
        auto& node = eapol_logoff.nodes[index];

        node.friend_code_seed = node_info.friend_code_seed;
        node.network_node_id = node_info.network_node_id;

        std::copy(node_info.username.begin(), node_info.username.end(), node.username.begin());
    }

    std::vector<u8> eapol_buffer(sizeof(EAPoLLogoffPacket));
    std::memcpy(eapol_buffer.data(), &eapol_logoff, sizeof(eapol_logoff));

    std::vector<u8> buffer = GenerateLLCHeader(EtherType::EAPoL);
    buffer.reserve(buffer.size() + sizeof(EAPoLStartPacket));
    buffer.insert(buffer.end(), eapol_buffer.begin(), eapol_buffer.end());
    return buffer;
}

EAPoLLogoffPacket ParseEAPoLLogoffFrame(std::span<const u8> frame) {
    EAPoLLogoffPacket eapol_logoff;

    // Skip the LLC header
    std::memcpy(&eapol_logoff, frame.data() + sizeof(LLCHeader), sizeof(eapol_logoff));
    return eapol_logoff;
}

} // namespace Service::NWM