aboutsummaryrefslogtreecommitdiff
path: root/src/core/hle/kernel/process.cpp
blob: 3d0a315ef5fc229b72f76e2bc6ac891de74cacf9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <memory>
#include <boost/serialization/array.hpp>
#include <boost/serialization/base_object.hpp>
#include <boost/serialization/bitset.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include <boost/serialization/string.hpp>
#include <boost/serialization/vector.hpp>
#include "common/archives.h"
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "common/serialization/boost_vector.hpp"
#include "core/core.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/hle/service/plgldr/plgldr.h"
#include "core/loader/loader.h"
#include "core/memory.h"

SERIALIZE_EXPORT_IMPL(Kernel::AddressMapping)
SERIALIZE_EXPORT_IMPL(Kernel::Process)
SERIALIZE_EXPORT_IMPL(Kernel::CodeSet)
SERIALIZE_EXPORT_IMPL(Kernel::CodeSet::Segment)

namespace Kernel {

template <class Archive>
void AddressMapping::serialize(Archive& ar, const unsigned int) {
    ar& address;
    ar& size;
    ar& read_only;
    ar& unk_flag;
}
SERIALIZE_IMPL(AddressMapping)

template <class Archive>
void Process::serialize(Archive& ar, const unsigned int) {
    ar& boost::serialization::base_object<Object>(*this);
    ar& handle_table;
    ar& codeset; // TODO: Replace with apploader reference
    ar& resource_limit;
    ar& svc_access_mask;
    ar& handle_table_size;
    ar&(boost::container::vector<AddressMapping, boost::container::dtl::static_storage_allocator<
                                                     AddressMapping, 8, 0, true>>&)address_mappings;
    ar& flags.raw;
    ar& no_thread_restrictions;
    ar& kernel_version;
    ar& ideal_processor;
    ar& status;
    ar& process_id;
    ar& creation_time_ticks;
    ar& vm_manager;
    ar& memory_used;
    ar& memory_region;
    ar& holding_memory;
    ar& holding_tls_memory;
    ar& tls_slots;
}
SERIALIZE_IMPL(Process)

std::shared_ptr<CodeSet> KernelSystem::CreateCodeSet(std::string name, u64 program_id) {
    auto codeset{std::make_shared<CodeSet>(*this)};

    codeset->name = std::move(name);
    codeset->program_id = program_id;

    return codeset;
}

CodeSet::CodeSet(KernelSystem& kernel) : Object(kernel) {}
CodeSet::~CodeSet() {}

template <class Archive>
void CodeSet::serialize(Archive& ar, const unsigned int) {
    ar& boost::serialization::base_object<Object>(*this);
    ar& memory;
    ar& segments;
    ar& entrypoint;
    ar& name;
    ar& program_id;
}
SERIALIZE_IMPL(CodeSet)

template <class Archive>
void CodeSet::Segment::serialize(Archive& ar, const unsigned int) {
    ar& offset;
    ar& addr;
    ar& size;
}
SERIALIZE_IMPL(CodeSet::Segment)

std::shared_ptr<Process> KernelSystem::CreateProcess(std::shared_ptr<CodeSet> code_set) {
    auto process{std::make_shared<Process>(*this)};

    process->codeset = std::move(code_set);
    process->flags.raw = 0;
    process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
    process->status = ProcessStatus::Created;
    process->process_id = ++next_process_id;
    process->creation_time_ticks = timing.GetTicks();

    process_list.push_back(process);
    return process;
}

void KernelSystem::TerminateProcess(std::shared_ptr<Process> process) {
    LOG_INFO(Kernel_SVC, "Process {} exiting", process->process_id);

    ASSERT_MSG(process->status == ProcessStatus::Running, "Process has already exited");
    process->status = ProcessStatus::Exited;

    // Stop all process threads.
    for (u32 core = 0; core < Core::GetNumCores(); core++) {
        GetThreadManager(core).TerminateProcessThreads(process);
    }

    process->Exit();
    std::erase(process_list, process);
}

void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
    for (std::size_t i = 0; i < len; ++i) {
        u32 descriptor = kernel_caps[i];
        u32 type = descriptor >> 20;

        if (descriptor == 0xFFFFFFFF) {
            // Unused descriptor entry
            continue;
        } else if ((type & 0xF00) == 0xE00) { // 0x0FFF
            // Allowed interrupts list
            LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
        } else if ((type & 0xF80) == 0xF00) { // 0x07FF
            // Allowed syscalls mask
            unsigned int index = ((descriptor >> 24) & 7) * 24;
            u32 bits = descriptor & 0xFFFFFF;

            while (bits && index < svc_access_mask.size()) {
                svc_access_mask.set(index, bits & 1);
                ++index;
                bits >>= 1;
            }
        } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
            // Handle table size
            handle_table_size = descriptor & 0x3FF;
        } else if ((type & 0xFF8) == 0xFF0) { // 0x007F
            // Misc. flags
            flags.raw = descriptor & 0xFFFF;
        } else if ((type & 0xFFE) == 0xFF8) { // 0x001F
            // Mapped memory range
            if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
                LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
                continue;
            }
            u32 end_desc = kernel_caps[i + 1];
            ++i; // Skip over the second descriptor on the next iteration

            AddressMapping mapping;
            mapping.address = descriptor << 12;
            VAddr end_address = end_desc << 12;

            if (mapping.address < end_address) {
                mapping.size = end_address - mapping.address;
            } else {
                mapping.size = 0;
            }

            mapping.read_only = (descriptor & (1 << 20)) != 0;
            mapping.unk_flag = (end_desc & (1 << 20)) != 0;

            address_mappings.push_back(mapping);
        } else if ((type & 0xFFF) == 0xFFE) { // 0x000F
            // Mapped memory page
            AddressMapping mapping;
            mapping.address = descriptor << 12;
            mapping.size = Memory::CITRA_PAGE_SIZE;
            mapping.read_only = false;
            mapping.unk_flag = false;

            address_mappings.push_back(mapping);
        } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
            // Kernel version
            kernel_version = descriptor & 0xFFFF;

            int minor = kernel_version & 0xFF;
            int major = (kernel_version >> 8) & 0xFF;
            LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
        } else {
            LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
        }
    }
}

void Process::Set3dsxKernelCaps() {
    svc_access_mask.set();

    address_mappings = {
        {0x1FF50000, 0x8000, true},    // part of DSP RAM
        {0x1FF70000, 0x8000, true},    // part of DSP RAM
        {0x1F000000, 0x600000, false}, // entire VRAM
    };

    // Similar to Rosalina, we set kernel version to a recent one.
    // This is 11.17.0, to be consistent with core/hle/kernel/config_mem.cpp
    // TODO: refactor kernel version out so it is configurable and consistent
    // among all relevant places.
    kernel_version = 0x23a;
}

void Process::Run(s32 main_thread_priority, u32 stack_size) {
    memory_region = kernel.GetMemoryRegion(flags.memory_region);

    // Ensure we can reserve a thread. Real kernel returns 0xC860180C if this fails.
    if (!resource_limit->Reserve(ResourceLimitType::Thread, 1)) {
        return;
    }

    VAddr out_addr{};

    auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
                          MemoryState memory_state) {
        HeapAllocate(std::addressof(out_addr), segment.addr, segment.size, permissions,
                     memory_state, true);
        kernel.memory.WriteBlock(*this, segment.addr, codeset->memory.data() + segment.offset,
                                 segment.size);
    };

    // Map CodeSet segments
    MapSegment(codeset->CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
    MapSegment(codeset->RODataSegment(), VMAPermission::Read, MemoryState::Code);
    MapSegment(codeset->DataSegment(), VMAPermission::ReadWrite, MemoryState::Private);

    // Allocate and map stack
    HeapAllocate(std::addressof(out_addr), Memory::HEAP_VADDR_END - stack_size, stack_size,
                 VMAPermission::ReadWrite, MemoryState::Locked, true);

    // Map special address mappings
    kernel.MapSharedPages(vm_manager);
    for (const auto& mapping : address_mappings) {
        kernel.HandleSpecialMapping(vm_manager, mapping);
    }

    auto plgldr = Service::PLGLDR::GetService(Core::System::GetInstance());
    if (plgldr) {
        plgldr->OnProcessRun(*this, kernel);
    }

    status = ProcessStatus::Running;

    vm_manager.LogLayout(Common::Log::Level::Debug);
    Kernel::SetupMainThread(kernel, codeset->entrypoint, main_thread_priority, SharedFrom(this));
}

void Process::Exit() {
    auto plgldr = Service::PLGLDR::GetService(Core::System::GetInstance());
    if (plgldr) {
        plgldr->OnProcessExit(*this, kernel);
    }
}

VAddr Process::GetLinearHeapAreaAddress() const {
    // Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
    // the extra RAM in the n3DS.
    return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}

VAddr Process::GetLinearHeapBase() const {
    return GetLinearHeapAreaAddress() + memory_region->base;
}

VAddr Process::GetLinearHeapLimit() const {
    return GetLinearHeapBase() + memory_region->size;
}

Result Process::HeapAllocate(VAddr* out_addr, VAddr target, u32 size, VMAPermission perms,
                             MemoryState memory_state, bool skip_range_check) {
    LOG_DEBUG(Kernel, "Allocate heap target={:08X}, size={:08X}", target, size);
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
        target + size < target) {
        if (!skip_range_check) {
            LOG_ERROR(Kernel, "Invalid heap address");
            return ResultInvalidAddress;
        }
    }
    {
        auto vma = vm_manager.FindVMA(target);
        if (vma->second.type != VMAType::Free ||
            vma->second.base + vma->second.size < target + size) {
            LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
            return ResultInvalidAddressState;
        }
    }
    auto allocated_fcram = memory_region->HeapAllocate(size);
    if (allocated_fcram.empty()) {
        LOG_ERROR(Kernel, "Not enough space");
        return ResultOutOfHeapMemory;
    }

    // Maps heap block by block
    VAddr interval_target = target;
    for (const auto& interval : allocated_fcram) {
        u32 interval_size = interval.upper() - interval.lower();
        LOG_DEBUG(Kernel, "Allocated FCRAM region lower={:08X}, upper={:08X}", interval.lower(),
                  interval.upper());
        std::fill(kernel.memory.GetFCRAMPointer(interval.lower()),
                  kernel.memory.GetFCRAMPointer(interval.upper()), 0);
        auto vma = vm_manager.MapBackingMemory(interval_target,
                                               kernel.memory.GetFCRAMRef(interval.lower()),
                                               interval_size, memory_state);
        ASSERT(vma.Succeeded());
        vm_manager.Reprotect(vma.Unwrap(), perms);
        interval_target += interval_size;
    }

    holding_memory += allocated_fcram;
    memory_used += size;
    resource_limit->Reserve(ResourceLimitType::Commit, size);

    *out_addr = target;
    return ResultSuccess;
}

Result Process::HeapFree(VAddr target, u32 size) {
    LOG_DEBUG(Kernel, "Free heap target={:08X}, size={:08X}", target, size);
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
        target + size < target) {
        LOG_ERROR(Kernel, "Invalid heap address");
        return ResultInvalidAddress;
    }

    R_SUCCEED_IF(size == 0);

    // Free heaps block by block
    CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(target, size));
    for (const auto& [backing_memory, block_size] : backing_blocks) {
        const auto backing_offset = kernel.memory.GetFCRAMOffset(backing_memory.GetPtr());
        memory_region->Free(backing_offset, block_size);
        holding_memory -= MemoryRegionInfo::Interval(backing_offset, backing_offset + block_size);
    }

    Result result = vm_manager.UnmapRange(target, size);
    ASSERT(result.IsSuccess());

    memory_used -= size;
    resource_limit->Release(ResourceLimitType::Commit, size);

    return ResultSuccess;
}

Result Process::LinearAllocate(VAddr* out_addr, VAddr target, u32 size, VMAPermission perms) {
    LOG_DEBUG(Kernel, "Allocate linear heap target={:08X}, size={:08X}", target, size);
    u32 physical_offset;
    if (target == 0) {
        auto offset = memory_region->LinearAllocate(size);
        if (!offset) {
            LOG_ERROR(Kernel, "Not enough space");
            return ResultOutOfHeapMemory;
        }
        physical_offset = *offset;
        target = physical_offset + GetLinearHeapAreaAddress();
    } else {
        if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
            target + size < target) {
            LOG_ERROR(Kernel, "Invalid linear heap address");
            return ResultInvalidAddress;
        }

        // Kernel would crash/return error when target doesn't meet some requirement.
        // It seems that target is required to follow immediately after the allocated linear heap,
        // or cover the entire hole if there is any.
        // Right now we just ignore these checks because they are still unclear. Further more,
        // games and homebrew only ever seem to pass target = 0 here (which lets the kernel decide
        // the address), so this not important.

        physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
        if (!memory_region->LinearAllocate(physical_offset, size)) {
            LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
            return ResultInvalidAddressState;
        }
    }

    auto backing_memory = kernel.memory.GetFCRAMRef(physical_offset);

    std::fill(backing_memory.GetPtr(), backing_memory.GetPtr() + size, 0);
    auto vma = vm_manager.MapBackingMemory(target, backing_memory, size, MemoryState::Continuous);
    ASSERT(vma.Succeeded());
    vm_manager.Reprotect(vma.Unwrap(), perms);

    holding_memory += MemoryRegionInfo::Interval(physical_offset, physical_offset + size);
    memory_used += size;
    resource_limit->Reserve(ResourceLimitType::Commit, size);

    LOG_DEBUG(Kernel, "Allocated at target={:08X}", target);
    *out_addr = target;
    return ResultSuccess;
}

Result Process::LinearFree(VAddr target, u32 size) {
    LOG_DEBUG(Kernel, "Free linear heap target={:08X}, size={:08X}", target, size);
    if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
        target + size < target) {
        LOG_ERROR(Kernel, "Invalid linear heap address");
        return ResultInvalidAddress;
    }

    R_SUCCEED_IF(size == 0);
    R_TRY(vm_manager.UnmapRange(target, size));

    u32 physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
    memory_region->Free(physical_offset, size);

    holding_memory -= MemoryRegionInfo::Interval(physical_offset, physical_offset + size);
    memory_used -= size;
    resource_limit->Release(ResourceLimitType::Commit, size);

    return ResultSuccess;
}

ResultVal<VAddr> Process::AllocateThreadLocalStorage() {
    std::size_t tls_page;
    std::size_t tls_slot;
    bool needs_allocation = true;

    // Iterate over all the allocated pages, and try to find one where not all slots are used.
    for (tls_page = 0; tls_page < tls_slots.size(); ++tls_page) {
        const auto& page_tls_slots = tls_slots[tls_page];
        if (!page_tls_slots.all()) {
            // We found a page with at least one free slot, find which slot it is.
            for (tls_slot = 0; tls_slot < page_tls_slots.size(); ++tls_slot) {
                if (!page_tls_slots.test(tls_slot)) {
                    needs_allocation = false;
                    break;
                }
            }

            if (!needs_allocation) {
                break;
            }
        }
    }

    if (needs_allocation) {
        tls_page = tls_slots.size();
        tls_slot = 0;

        LOG_DEBUG(Kernel, "Allocating new TLS page in slot {}", tls_page);

        // There are no already-allocated pages with free slots, lets allocate a new one.
        // TLS pages are allocated from the BASE region in the linear heap.
        auto base_memory_region = kernel.GetMemoryRegion(MemoryRegion::BASE);

        // Allocate some memory from the end of the linear heap for this region.
        auto offset = base_memory_region->LinearAllocate(Memory::CITRA_PAGE_SIZE);
        if (!offset) {
            LOG_ERROR(Kernel_SVC,
                      "Not enough space in BASE linear region to allocate a new TLS page");
            return ResultOutOfMemory;
        }

        holding_tls_memory +=
            MemoryRegionInfo::Interval(*offset, *offset + Memory::CITRA_PAGE_SIZE);
        memory_used += Memory::CITRA_PAGE_SIZE;

        // The page is completely available at the start.
        tls_slots.emplace_back(0);

        // Map the page to the current process' address space.
        auto tls_page_addr =
            Memory::TLS_AREA_VADDR + static_cast<VAddr>(tls_page) * Memory::CITRA_PAGE_SIZE;
        vm_manager.MapBackingMemory(tls_page_addr, kernel.memory.GetFCRAMRef(*offset),
                                    Memory::CITRA_PAGE_SIZE, MemoryState::Locked);

        LOG_DEBUG(Kernel, "Allocated TLS page at addr={:08X}", tls_page_addr);
    } else {
        LOG_DEBUG(Kernel, "Allocating TLS in existing page slot {}", tls_page);
    }

    // Mark the slot as used
    tls_slots[tls_page].set(tls_slot);

    auto tls_address = Memory::TLS_AREA_VADDR +
                       static_cast<VAddr>(tls_page) * Memory::CITRA_PAGE_SIZE +
                       static_cast<VAddr>(tls_slot) * Memory::TLS_ENTRY_SIZE;
    kernel.memory.ZeroBlock(*this, tls_address, Memory::TLS_ENTRY_SIZE);

    return tls_address;
}

Result Process::Map(VAddr target, VAddr source, u32 size, VMAPermission perms, bool privileged) {
    LOG_DEBUG(Kernel, "Map memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}", target,
              source, size, perms);
    if (!privileged && (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
                        source + size < source)) {
        LOG_ERROR(Kernel, "Invalid source address");
        return ResultInvalidAddress;
    }

    // TODO(wwylele): check target address range. Is it also restricted to heap region?

    // Check range overlapping
    if (source - target < size || target - source < size) {
        if (privileged) {
            if (source == target) {
                // privileged Map allows identical source and target address, which simply changes
                // the state and the permission of the memory
                return vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
                                                    VMAPermission::ReadWrite,
                                                    MemoryState::AliasCode, perms);
            } else {
                return ResultInvalidAddress;
            }
        } else {
            return ResultInvalidAddressState;
        }
    }

    auto vma = vm_manager.FindVMA(target);
    if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
        LOG_ERROR(Kernel, "Trying to map to already allocated memory");
        return ResultInvalidAddressState;
    }

    MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;
    MemoryState target_state = privileged ? MemoryState::AliasCode : MemoryState::Alias;
    VMAPermission source_perm = privileged ? VMAPermission::None : VMAPermission::ReadWrite;

    // Mark source region as Aliased
    R_TRY(vm_manager.ChangeMemoryState(source, size, MemoryState::Private, VMAPermission::ReadWrite,
                                       source_state, source_perm));

    CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(source, size));
    VAddr interval_target = target;
    for (const auto& [backing_memory, block_size] : backing_blocks) {
        auto target_vma =
            vm_manager.MapBackingMemory(interval_target, backing_memory, block_size, target_state);
        ASSERT(target_vma.Succeeded());
        vm_manager.Reprotect(target_vma.Unwrap(), perms);
        interval_target += block_size;
    }

    return ResultSuccess;
}
Result Process::Unmap(VAddr target, VAddr source, u32 size, VMAPermission perms, bool privileged) {
    LOG_DEBUG(Kernel, "Unmap memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}",
              target, source, size, perms);
    if (!privileged && (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
                        source + size < source)) {
        LOG_ERROR(Kernel, "Invalid source address");
        return ResultInvalidAddress;
    }

    // TODO(wwylele): check target address range. Is it also restricted to heap region?

    if (source - target < size || target - source < size) {
        if (privileged) {
            if (source == target) {
                // privileged Unmap allows identical source and target address, which simply changes
                // the state and the permission of the memory
                return vm_manager.ChangeMemoryState(source, size, MemoryState::AliasCode,
                                                    VMAPermission::None, MemoryState::Private,
                                                    perms);
            } else {
                return ResultInvalidAddress;
            }
        } else {
            return ResultInvalidAddressState;
        }
    }

    // TODO(wwylele): check that the source and the target are actually a pair created by Map
    // Should return error 0xD8E007F5 in this case

    MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;

    R_TRY(vm_manager.UnmapRange(target, size));

    // Change back source region state. Note that the permission is reprotected according to param
    R_TRY(vm_manager.ChangeMemoryState(source, size, source_state, VMAPermission::None,
                                       MemoryState::Private, perms));

    return ResultSuccess;
}

void Process::FreeAllMemory() {
    if (memory_region == nullptr || resource_limit == nullptr) {
        return;
    }

    // Free any heap/linear memory allocations.
    for (auto& entry : holding_memory) {
        LOG_DEBUG(Kernel, "Freeing process memory region 0x{:08X} - 0x{:08X}", entry.lower(),
                  entry.upper());
        auto size = entry.upper() - entry.lower();
        memory_region->Free(entry.lower(), size);
        memory_used -= size;
        resource_limit->Release(ResourceLimitType::Commit, size);
    }
    holding_memory.clear();

    // Free any TLS memory allocations.
    auto base_memory_region = kernel.GetMemoryRegion(MemoryRegion::BASE);
    for (auto& entry : holding_tls_memory) {
        LOG_DEBUG(Kernel, "Freeing process TLS memory region 0x{:08X} - 0x{:08X}", entry.lower(),
                  entry.upper());
        auto size = entry.upper() - entry.lower();
        base_memory_region->Free(entry.lower(), size);
        memory_used -= size;
    }
    holding_tls_memory.clear();
    tls_slots.clear();

    // Diagnostics for debugging.
    // TODO: The way certain non-application shared memory is allocated can result in very slight
    // leaks in these values still.
    LOG_DEBUG(Kernel, "Remaining memory used after process cleanup: 0x{:08X}", memory_used);
    LOG_DEBUG(Kernel, "Remaining memory resource commit after process cleanup: 0x{:08X}",
              resource_limit->GetCurrentValue(ResourceLimitType::Commit));
}

Kernel::Process::Process(KernelSystem& kernel)
    : Object(kernel), handle_table(kernel), vm_manager(kernel.memory, *this), kernel(kernel) {
    kernel.memory.RegisterPageTable(vm_manager.page_table);
}
Kernel::Process::~Process() {
    LOG_INFO(Kernel, "Cleaning up process {}", process_id);

    // Release all objects this process owns first so that their potential destructor can do clean
    // up with this process before further destruction.
    // TODO(wwylele): explicitly destroy or invalidate objects this process owns (threads, shared
    // memory etc.) even if they are still referenced by other processes.
    handle_table.Clear();

    FreeAllMemory();
    kernel.memory.UnregisterPageTable(vm_manager.page_table);
}

std::shared_ptr<Process> KernelSystem::GetProcessById(u32 process_id) const {
    auto itr = std::find_if(
        process_list.begin(), process_list.end(),
        [&](const std::shared_ptr<Process>& process) { return process->process_id == process_id; });

    if (itr == process_list.end())
        return nullptr;

    return *itr;
}
} // namespace Kernel