1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
/* $OpenBSD: bn_bpsw.c,v 1.10 2023/05/10 21:05:24 tb Exp $ */
/*
* Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr>
* Copyright (c) 2022 Theo Buehler <tb@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <openssl/bn.h>
#include "bn_local.h"
#include "bn_prime.h"
/*
* For an odd n compute a / 2 (mod n). If a is even, we can do a plain
* division, otherwise calculate (a + n) / 2. Then reduce (mod n).
*/
static int
bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
if (!BN_is_odd(n))
return 0;
if (BN_is_odd(a)) {
if (!BN_add(a, a, n))
return 0;
}
if (!BN_rshift1(a, a))
return 0;
if (!BN_mod_ct(a, a, n, ctx))
return 0;
return 1;
}
/*
* Given the next binary digit of k and the current Lucas terms U and V, this
* helper computes the next terms in the Lucas sequence defined as follows:
*
* U' = U * V (mod n)
* V' = (V^2 + D * U^2) / 2 (mod n)
*
* If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns
*
* U'' = (U' + V') / 2 (mod n)
* V'' = (V' + D * U') / 2 (mod n)
*
* Compare with FIPS 186-4, Appendix C.3.3, step 6.
*/
static int
bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D,
const BIGNUM *n, BN_CTX *ctx)
{
BIGNUM *tmp;
int ret = 0;
BN_CTX_start(ctx);
if ((tmp = BN_CTX_get(ctx)) == NULL)
goto err;
/* Calculate D * U^2 before computing U'. */
if (!BN_sqr(tmp, U, ctx))
goto err;
if (!BN_mul(tmp, D, tmp, ctx))
goto err;
/* U' = U * V (mod n). */
if (!BN_mod_mul(U, U, V, n, ctx))
goto err;
/* V' = (V^2 + D * U^2) / 2 (mod n). */
if (!BN_sqr(V, V, ctx))
goto err;
if (!BN_add(V, V, tmp))
goto err;
if (!bn_div_by_two_mod_odd_n(V, n, ctx))
goto err;
if (digit == 1) {
/* Calculate D * U' before computing U''. */
if (!BN_mul(tmp, D, U, ctx))
goto err;
/* U'' = (U' + V') / 2 (mod n). */
if (!BN_add(U, U, V))
goto err;
if (!bn_div_by_two_mod_odd_n(U, n, ctx))
goto err;
/* V'' = (V' + D * U') / 2 (mod n). */
if (!BN_add(V, V, tmp))
goto err;
if (!bn_div_by_two_mod_odd_n(V, n, ctx))
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6.
*/
static int
bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D,
const BIGNUM *n, BN_CTX *ctx)
{
int digit, i;
int ret = 0;
if (!BN_one(U))
goto err;
if (!BN_one(V))
goto err;
/*
* Iterate over the digits of k from MSB to LSB. Start at digit 2
* since the first digit is dealt with by setting U = 1 and V = 1.
*/
for (i = BN_num_bits(k) - 2; i >= 0; i--) {
digit = BN_is_bit_set(k, i);
if (!bn_lucas_step(U, V, digit, D, n, ctx))
goto err;
}
ret = 1;
err:
return ret;
}
/*
* This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3.
* Every strong Lucas pseudoprime n is also a Lucas pseudoprime since
* U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s.
*/
static int
bn_strong_lucas_test(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *D,
BN_CTX *ctx)
{
BIGNUM *k, *U, *V;
int r, s;
int ret = 0;
BN_CTX_start(ctx);
if ((k = BN_CTX_get(ctx)) == NULL)
goto err;
if ((U = BN_CTX_get(ctx)) == NULL)
goto err;
if ((V = BN_CTX_get(ctx)) == NULL)
goto err;
/*
* Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones
* of n and set the lowest bit of the resulting number k.
*/
s = 0;
while (BN_is_bit_set(n, s))
s++;
if (!BN_rshift(k, n, s))
goto err;
if (!BN_set_bit(k, 0))
goto err;
/*
* Calculate the Lucas terms U_k and V_k. If either of them is zero,
* then n is a strong Lucas pseudoprime.
*/
if (!bn_lucas(U, V, k, D, n, ctx))
goto err;
if (BN_is_zero(U) || BN_is_zero(V)) {
*is_pseudoprime = 1;
goto done;
}
/*
* Calculate the Lucas terms U_{k * 2^r}, V_{k * 2^r} for 1 <= r < s.
* If any V_{k * 2^r} is zero then n is a strong Lucas pseudoprime.
*/
for (r = 1; r < s; r++) {
if (!bn_lucas_step(U, V, 0, D, n, ctx))
goto err;
if (BN_is_zero(V)) {
*is_pseudoprime = 1;
goto done;
}
}
/*
* If we got here, n is definitely composite.
*/
*is_pseudoprime = 0;
done:
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Test n for primality using the strong Lucas test with Selfridge's Method A.
* Returns 1 if n is prime or a strong Lucas-Selfridge pseudoprime.
* If it returns 0 then n is definitely composite.
*/
static int
bn_strong_lucas_selfridge(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx)
{
BIGNUM *D, *two;
int is_perfect_square, jacobi_symbol, sign;
int ret = 0;
BN_CTX_start(ctx);
/* If n is a perfect square, it is composite. */
if (!bn_is_perfect_square(&is_perfect_square, n, ctx))
goto err;
if (is_perfect_square) {
*is_pseudoprime = 0;
goto done;
}
/*
* Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ...
* such that the Jacobi symbol (D/n) is -1.
*/
if ((D = BN_CTX_get(ctx)) == NULL)
goto err;
if ((two = BN_CTX_get(ctx)) == NULL)
goto err;
sign = 1;
if (!BN_set_word(D, 5))
goto err;
if (!BN_set_word(two, 2))
goto err;
while (1) {
/* For odd n the Kronecker symbol computes the Jacobi symbol. */
if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2)
goto err;
/* We found the value for D. */
if (jacobi_symbol == -1)
break;
/* n and D have prime factors in common. */
if (jacobi_symbol == 0) {
*is_pseudoprime = 0;
goto done;
}
sign = -sign;
if (!BN_uadd(D, D, two))
goto err;
BN_set_negative(D, sign == -1);
}
if (!bn_strong_lucas_test(is_pseudoprime, n, D, ctx))
goto err;
done:
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Fermat criterion in Miller-Rabin test.
*
* Check whether 1 < base < n - 1 witnesses that n is composite. For prime n:
*
* * Fermat's little theorem: base^(n-1) = 1 (mod n).
* * The only square roots of 1 (mod n) are 1 and -1.
*
* Calculate base^((n-1)/2) by writing n - 1 = k * 2^s with odd k. Iteratively
* compute power = (base^k)^(2^(s-1)) by successive squaring of base^k.
*
* If power ever reaches -1, base^(n-1) is equal to 1 and n is a pseudoprime
* for base. If power reaches 1 before -1 during successive squaring, we have
* an unexpected square root of 1 and n is composite. Otherwise base^(n-1) != 1,
* and n is composite.
*/
static int
bn_fermat(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *n_minus_one,
const BIGNUM *k, int s, const BIGNUM *base, BN_CTX *ctx, BN_MONT_CTX *mctx)
{
BIGNUM *power;
int ret = 0;
int i;
BN_CTX_start(ctx);
if ((power = BN_CTX_get(ctx)) == NULL)
goto err;
/* Sanity check: ensure that 1 < base < n - 1. */
if (BN_cmp(base, BN_value_one()) <= 0 || BN_cmp(base, n_minus_one) >= 0)
goto err;
if (!BN_mod_exp_mont_ct(power, base, k, n, ctx, mctx))
goto err;
if (BN_is_one(power) || BN_cmp(power, n_minus_one) == 0) {
*is_pseudoprime = 1;
goto done;
}
/* Loop invariant: power is neither 1 nor -1 (mod n). */
for (i = 1; i < s; i++) {
if (!BN_mod_sqr(power, power, n, ctx))
goto err;
/* n is a pseudoprime for base. */
if (BN_cmp(power, n_minus_one) == 0) {
*is_pseudoprime = 1;
goto done;
}
/* n is composite: there's a square root of unity != 1 or -1. */
if (BN_is_one(power)) {
*is_pseudoprime = 0;
goto done;
}
}
/*
* If we get here, n is definitely composite: base^(n-1) != 1.
*/
*is_pseudoprime = 0;
done:
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Miller-Rabin primality test for base 2 and for |rounds| of random bases.
* On success: is_pseudoprime == 0 implies that n is composite.
*/
static int
bn_miller_rabin(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx,
size_t rounds)
{
BN_MONT_CTX *mctx = NULL;
BIGNUM *base, *k, *n_minus_one, *three;
size_t i;
int s;
int ret = 0;
BN_CTX_start(ctx);
if ((base = BN_CTX_get(ctx)) == NULL)
goto err;
if ((k = BN_CTX_get(ctx)) == NULL)
goto err;
if ((n_minus_one = BN_CTX_get(ctx)) == NULL)
goto err;
if ((three = BN_CTX_get(ctx)) == NULL)
goto err;
if (BN_is_word(n, 2) || BN_is_word(n, 3)) {
*is_pseudoprime = 1;
goto done;
}
if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) {
*is_pseudoprime = 0;
goto done;
}
if (!BN_sub(n_minus_one, n, BN_value_one()))
goto err;
/*
* Factorize n - 1 = k * 2^s.
*/
s = 0;
while (!BN_is_bit_set(n_minus_one, s))
s++;
if (!BN_rshift(k, n_minus_one, s))
goto err;
/*
* Montgomery setup for n.
*/
if ((mctx = BN_MONT_CTX_new()) == NULL)
goto err;
if (!BN_MONT_CTX_set(mctx, n, ctx))
goto err;
/*
* Perform a Miller-Rabin test for base 2 as required by BPSW.
*/
if (!BN_set_word(base, 2))
goto err;
if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx, mctx))
goto err;
if (!*is_pseudoprime)
goto done;
/*
* Perform Miller-Rabin tests with random 3 <= base < n - 1 to reduce
* risk of false positives in BPSW.
*/
if (!BN_set_word(three, 3))
goto err;
for (i = 0; i < rounds; i++) {
if (!bn_rand_interval(base, three, n_minus_one))
goto err;
if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx,
mctx))
goto err;
if (!*is_pseudoprime)
goto done;
}
/*
* If we got here, we have a Miller-Rabin pseudoprime.
*/
*is_pseudoprime = 1;
done:
ret = 1;
err:
BN_MONT_CTX_free(mctx);
BN_CTX_end(ctx);
return ret;
}
/*
* The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin
* test for base 2 with a Strong Lucas pseudoprime test.
*/
int
bn_is_prime_bpsw(int *is_pseudoprime, const BIGNUM *n, BN_CTX *in_ctx,
size_t rounds)
{
BN_CTX *ctx = NULL;
BN_ULONG mod;
int i;
int ret = 0;
if (BN_is_word(n, 2)) {
*is_pseudoprime = 1;
goto done;
}
if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) {
*is_pseudoprime = 0;
goto done;
}
/* Trial divisions with the first 2048 primes. */
for (i = 0; i < NUMPRIMES; i++) {
if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1)
goto err;
if (mod == 0) {
*is_pseudoprime = BN_is_word(n, primes[i]);
goto done;
}
}
if ((ctx = in_ctx) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (!bn_miller_rabin(is_pseudoprime, n, ctx, rounds))
goto err;
if (!*is_pseudoprime)
goto done;
if (!bn_strong_lucas_selfridge(is_pseudoprime, n, ctx))
goto err;
done:
ret = 1;
err:
if (ctx != in_ctx)
BN_CTX_free(ctx);
return ret;
}
|