1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <tuple>
#include <vector>
#include <catch2/catch_test_macros.hpp>
#include <mcl/stdint.hpp>
#include "../rand_int.h"
#include "dynarmic/common/fp/fpcr.h"
#include "dynarmic/common/fp/fpsr.h"
#include "dynarmic/common/fp/unpacked.h"
using namespace Dynarmic;
using namespace Dynarmic::FP;
TEST_CASE("FPUnpack Tests", "[fp]") {
const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases{
{0x00000000, {FPType::Zero, false, ToNormalized(false, 0, 0)}, 0},
{0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0},
{0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0},
{0x7F800001, {FPType::SNaN, false, ToNormalized(false, 0, 0)}, 0},
{0xFF800001, {FPType::SNaN, true, ToNormalized(true, 0, 0)}, 0},
{0x7FC00001, {FPType::QNaN, false, ToNormalized(false, 0, 0)}, 0},
{0xFFC00001, {FPType::QNaN, true, ToNormalized(true, 0, 0)}, 0},
{0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
};
const FPCR fpcr;
for (const auto& [input, expected_output, expected_fpsr] : test_cases) {
FPSR fpsr;
const auto output = FPUnpack<u32>(input, fpcr, fpsr);
INFO("Input: " << std::hex << input);
INFO("Output Sign: " << std::get<2>(output).sign);
INFO("Output Exponent: " << std::get<2>(output).exponent);
INFO("Output Mantissa: " << std::hex << std::get<2>(output).mantissa);
INFO("Expected Sign: " << std::get<2>(expected_output).sign);
INFO("Expected Exponent: " << std::get<2>(expected_output).exponent);
INFO("Expected Mantissa: " << std::hex << std::get<2>(expected_output).mantissa);
REQUIRE(output == expected_output);
REQUIRE(fpsr.Value() == expected_fpsr);
}
}
TEST_CASE("FPRound Tests", "[fp]") {
const static std::vector<std::tuple<u32, std::tuple<FPType, bool, FPUnpacked>, u32>> test_cases{
{0x7F800000, {FPType::Infinity, false, ToNormalized(false, 1000000, 1)}, 0x14},
{0xFF800000, {FPType::Infinity, true, ToNormalized(true, 1000000, 1)}, 0x14},
{0x00000001, {FPType::Nonzero, false, ToNormalized(false, -149, 1)}, 0}, // Smallest single precision denormal is 2^-149.
{0x3F7FFFFF, {FPType::Nonzero, false, ToNormalized(false, -24, 0xFFFFFF)}, 0}, // 1.0 - epsilon
{0x3F800000, {FPType::Nonzero, false, ToNormalized(false, -28, 0xFFFFFFF)}, 0x10}, // rounds to 1.0
};
const FPCR fpcr;
for (const auto& [expected_output, input, expected_fpsr] : test_cases) {
FPSR fpsr;
const auto output = FPRound<u32>(std::get<2>(input), fpcr, fpsr);
INFO("Expected Output: " << std::hex << expected_output);
REQUIRE(output == expected_output);
REQUIRE(fpsr.Value() == expected_fpsr);
}
}
TEST_CASE("FPUnpack<->FPRound Round-trip Tests", "[fp]") {
const FPCR fpcr;
for (size_t count = 0; count < 100000; count++) {
FPSR fpsr;
const u32 input = RandInt(0, 1) == 0 ? RandInt<u32>(0x00000001, 0x7F800000) : RandInt<u32>(0x80000001, 0xFF800000);
const auto intermediate = std::get<2>(FPUnpack<u32>(input, fpcr, fpsr));
const u32 output = FPRound<u32>(intermediate, fpcr, fpsr);
INFO("Count: " << count);
INFO("Intermediate Values: " << std::hex << intermediate.sign << ';' << intermediate.exponent << ';' << intermediate.mantissa);
REQUIRE(input == output);
}
}
TEST_CASE("FPRound (near zero, round to posinf)", "[fp]") {
const FPUnpacked input = {false, -353, 0x0a98d25ace5b2000};
FPSR fpsr;
FPCR fpcr;
fpcr.RMode(RoundingMode::TowardsPlusInfinity);
const u32 output = FPRound<u32>(input, fpcr, fpsr);
REQUIRE(output == 0x00000001);
}
|