aboutsummaryrefslogtreecommitdiff
path: root/externals/dynarmic/tests/A32/fuzz_arm.cpp
blob: cda424e27d7823650579b64a9243e91fa82f10ae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/* This file is part of the dynarmic project.
 * Copyright (c) 2016 MerryMage
 * SPDX-License-Identifier: 0BSD
 */

#include <algorithm>
#include <array>
#include <cstdio>
#include <functional>
#include <tuple>
#include <type_traits>
#include <vector>

#include <catch2/catch_test_macros.hpp>
#include <mcl/bit/bit_count.hpp>
#include <mcl/bit/swap.hpp>
#include <mcl/scope_exit.hpp>
#include <mcl/stdint.hpp>

#include "../fuzz_util.h"
#include "../rand_int.h"
#include "../unicorn_emu/a32_unicorn.h"
#include "./testenv.h"
#include "dynarmic/common/fp/fpcr.h"
#include "dynarmic/common/fp/fpsr.h"
#include "dynarmic/common/llvm_disassemble.h"
#include "dynarmic/common/variant_util.h"
#include "dynarmic/frontend/A32/ITState.h"
#include "dynarmic/frontend/A32/a32_location_descriptor.h"
#include "dynarmic/frontend/A32/a32_types.h"
#include "dynarmic/frontend/A32/translate/a32_translate.h"
#include "dynarmic/interface/A32/a32.h"
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/location_descriptor.h"
#include "dynarmic/ir/opcodes.h"

// Must be declared last for all necessary operator<< to be declared prior to this.
#include <fmt/format.h>
#include <fmt/ostream.h>

namespace {
using namespace Dynarmic;

template<typename Fn>
bool AnyLocationDescriptorForTerminalHas(IR::Terminal terminal, Fn fn) {
    return Common::VisitVariant<bool>(terminal, [&](auto t) -> bool {
        using T = std::decay_t<decltype(t)>;
        if constexpr (std::is_same_v<T, IR::Term::Invalid>) {
            return false;
        } else if constexpr (std::is_same_v<T, IR::Term::ReturnToDispatch>) {
            return false;
        } else if constexpr (std::is_same_v<T, IR::Term::LinkBlock>) {
            return fn(t.next);
        } else if constexpr (std::is_same_v<T, IR::Term::LinkBlockFast>) {
            return fn(t.next);
        } else if constexpr (std::is_same_v<T, IR::Term::PopRSBHint>) {
            return false;
        } else if constexpr (std::is_same_v<T, IR::Term::Interpret>) {
            return fn(t.next);
        } else if constexpr (std::is_same_v<T, IR::Term::FastDispatchHint>) {
            return false;
        } else if constexpr (std::is_same_v<T, IR::Term::If>) {
            return AnyLocationDescriptorForTerminalHas(t.then_, fn) || AnyLocationDescriptorForTerminalHas(t.else_, fn);
        } else if constexpr (std::is_same_v<T, IR::Term::CheckBit>) {
            return AnyLocationDescriptorForTerminalHas(t.then_, fn) || AnyLocationDescriptorForTerminalHas(t.else_, fn);
        } else if constexpr (std::is_same_v<T, IR::Term::CheckHalt>) {
            return AnyLocationDescriptorForTerminalHas(t.else_, fn);
        } else {
            ASSERT_MSG(false, "Invalid terminal type");
            return false;
        }
    });
}

bool ShouldTestInst(u32 instruction, u32 pc, bool is_thumb, bool is_last_inst, A32::ITState it_state = {}) {
    const A32::LocationDescriptor location = A32::LocationDescriptor{pc, {}, {}}.SetTFlag(is_thumb).SetIT(it_state);
    IR::Block block{location};
    const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction);

    if (!should_continue && !is_last_inst) {
        return false;
    }

    if (auto terminal = block.GetTerminal(); boost::get<IR::Term::Interpret>(&terminal)) {
        return false;
    }

    if (AnyLocationDescriptorForTerminalHas(block.GetTerminal(), [&](IR::LocationDescriptor ld) { return A32::LocationDescriptor{ld}.PC() <= pc; })) {
        return false;
    }

    for (const auto& ir_inst : block) {
        switch (ir_inst.GetOpcode()) {
        case IR::Opcode::A32ExceptionRaised:
        case IR::Opcode::A32CallSupervisor:
        case IR::Opcode::A32CoprocInternalOperation:
        case IR::Opcode::A32CoprocSendOneWord:
        case IR::Opcode::A32CoprocSendTwoWords:
        case IR::Opcode::A32CoprocGetOneWord:
        case IR::Opcode::A32CoprocGetTwoWords:
        case IR::Opcode::A32CoprocLoadWords:
        case IR::Opcode::A32CoprocStoreWords:
            return false;
        // Currently unimplemented in Unicorn
        case IR::Opcode::FPVectorRecipEstimate16:
        case IR::Opcode::FPVectorRSqrtEstimate16:
        case IR::Opcode::VectorPolynomialMultiplyLong64:
            return false;
        default:
            continue;
        }
    }

    return true;
}

u32 GenRandomArmInst(u32 pc, bool is_last_inst) {
    static const struct InstructionGeneratorInfo {
        std::vector<InstructionGenerator> generators;
        std::vector<InstructionGenerator> invalid;
    } instructions = [] {
        const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/arm.inc"
#include "dynarmic/frontend/A32/decoder/asimd.inc"
#include "dynarmic/frontend/A32/decoder/vfp.inc"
#undef INST
        };

        std::vector<InstructionGenerator> generators;
        std::vector<InstructionGenerator> invalid;

        // List of instructions not to test
        static constexpr std::array do_not_test{
            // Translating load/stores
            "arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT",
            "arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT",
            // Exclusive load/stores
            "arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX",
            "arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX",
            "arm_SWP", "arm_SWPB",
            // Elevated load/store multiple instructions.
            "arm_LDM_eret", "arm_LDM_usr",
            "arm_STM_usr",
            // Hint instructions
            "arm_NOP", "arm_PLD_imm", "arm_PLD_reg", "arm_SEV",
            "arm_WFE", "arm_WFI", "arm_YIELD",
            // E, T, J
            "arm_BLX_reg", "arm_BLX_imm", "arm_BXJ", "arm_SETEND",
            // Coprocessor
            "arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC",
            // System
            "arm_CPS", "arm_RFE", "arm_SRS",
            // Undefined
            "arm_UDF",
            // FPSCR is inaccurate
            "vfp_VMRS",
            // Incorrect Unicorn implementations
            "asimd_VRECPS",         // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.
            "asimd_VRSQRTS",        // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.
            "vfp_VCVT_from_fixed",  // Unicorn does not do round-to-nearest-even for this instruction correctly.
        };

        for (const auto& [fn, bitstring] : list) {
            if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
                invalid.emplace_back(InstructionGenerator{bitstring});
                continue;
            }
            generators.emplace_back(InstructionGenerator{bitstring});
        }
        return InstructionGeneratorInfo{generators, invalid};
    }();

    while (true) {
        const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
        const u32 inst = instructions.generators[index].Generate();

        if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) {
            continue;
        }

        if (ShouldTestInst(inst, pc, false, is_last_inst)) {
            return inst;
        }
    }
}

std::vector<u16> GenRandomThumbInst(u32 pc, bool is_last_inst, A32::ITState it_state = {}) {
    static const struct InstructionGeneratorInfo {
        std::vector<InstructionGenerator> generators;
        std::vector<InstructionGenerator> invalid;
    } instructions = [] {
        const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/thumb16.inc"
#include "dynarmic/frontend/A32/decoder/thumb32.inc"
#undef INST
        };

        const std::vector<std::tuple<std::string, const char*>> vfp_list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/vfp.inc"
#undef INST
        };

        const std::vector<std::tuple<std::string, const char*>> asimd_list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/asimd.inc"
#undef INST
        };

        std::vector<InstructionGenerator> generators;
        std::vector<InstructionGenerator> invalid;

        // List of instructions not to test
        static constexpr std::array do_not_test{
            "thumb16_BKPT",
            "thumb16_IT",
            "thumb16_SETEND",

            // Exclusive load/stores
            "thumb32_LDREX",
            "thumb32_LDREXB",
            "thumb32_LDREXD",
            "thumb32_LDREXH",
            "thumb32_STREX",
            "thumb32_STREXB",
            "thumb32_STREXD",
            "thumb32_STREXH",

            // FPSCR is inaccurate
            "vfp_VMRS",

            // Unicorn is incorrect?
            "thumb32_MRS_reg",
            "thumb32_MSR_reg",

            // Unicorn has incorrect implementation (incorrect rounding and unsets CPSR.T??)
            "vfp_VCVT_to_fixed",
            "vfp_VCVT_from_fixed",
            "asimd_VRECPS",   // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.
            "asimd_VRSQRTS",  // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.

            // Coprocessor
            "thumb32_CDP",
            "thumb32_LDC",
            "thumb32_MCR",
            "thumb32_MCRR",
            "thumb32_MRC",
            "thumb32_MRRC",
            "thumb32_STC",
        };

        for (const auto& [fn, bitstring] : list) {
            if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
                invalid.emplace_back(InstructionGenerator{bitstring});
                continue;
            }
            generators.emplace_back(InstructionGenerator{bitstring});
        }
        for (const auto& [fn, bs] : vfp_list) {
            std::string bitstring = bs;
            if (bitstring.substr(0, 4) == "cccc" || bitstring.substr(0, 4) == "----") {
                bitstring.replace(0, 4, "1110");
            }
            if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
                invalid.emplace_back(InstructionGenerator{bitstring.c_str()});
                continue;
            }
            generators.emplace_back(InstructionGenerator{bitstring.c_str()});
        }
        for (const auto& [fn, bs] : asimd_list) {
            std::string bitstring = bs;
            if (bitstring.substr(0, 7) == "1111001") {
                const char U = bitstring[7];
                bitstring.replace(0, 8, "111-1111");
                bitstring[3] = U;
            } else if (bitstring.substr(0, 8) == "11110100") {
                bitstring.replace(0, 8, "11111001");
            } else {
                ASSERT_FALSE("Unhandled ASIMD instruction: {} {}", fn, bs);
            }
            if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
                invalid.emplace_back(InstructionGenerator{bitstring.c_str()});
                continue;
            }
            generators.emplace_back(InstructionGenerator{bitstring.c_str()});
        }
        return InstructionGeneratorInfo{generators, invalid};
    }();

    while (true) {
        const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
        const u32 inst = instructions.generators[index].Generate();
        const bool is_four_bytes = (inst >> 16) != 0;

        if (ShouldTestInst(is_four_bytes ? mcl::bit::swap_halves_32(inst) : inst, pc, true, is_last_inst, it_state)) {
            if (is_four_bytes)
                return {static_cast<u16>(inst >> 16), static_cast<u16>(inst)};
            return {static_cast<u16>(inst)};
        }
    }
}

template<typename TestEnv>
Dynarmic::A32::UserConfig GetUserConfig(TestEnv& testenv) {
    Dynarmic::A32::UserConfig user_config;
    user_config.optimizations &= ~OptimizationFlag::FastDispatch;
    user_config.callbacks = &testenv;
    user_config.always_little_endian = true;
    return user_config;
}

template<typename TestEnv>
static void RunTestInstance(Dynarmic::A32::Jit& jit,
                            A32Unicorn<TestEnv>& uni,
                            TestEnv& jit_env,
                            TestEnv& uni_env,
                            const typename A32Unicorn<TestEnv>::RegisterArray& regs,
                            const typename A32Unicorn<TestEnv>::ExtRegArray& vecs,
                            const std::vector<typename TestEnv::InstructionType>& instructions,
                            const u32 cpsr,
                            const u32 fpscr,
                            const size_t ticks_left) {
    const u32 initial_pc = regs[15];
    const u32 num_words = initial_pc / sizeof(typename TestEnv::InstructionType);
    const u32 code_mem_size = num_words + static_cast<u32>(instructions.size());
    const u32 expected_end_pc = code_mem_size * sizeof(typename TestEnv::InstructionType);

    jit_env.code_mem.resize(code_mem_size);
    uni_env.code_mem.resize(code_mem_size);
    std::fill(jit_env.code_mem.begin(), jit_env.code_mem.end(), TestEnv::infinite_loop);
    std::fill(uni_env.code_mem.begin(), uni_env.code_mem.end(), TestEnv::infinite_loop);

    std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words);
    std::copy(instructions.begin(), instructions.end(), uni_env.code_mem.begin() + num_words);
    jit_env.PadCodeMem();
    uni_env.PadCodeMem();
    jit_env.modified_memory.clear();
    uni_env.modified_memory.clear();
    jit_env.interrupts.clear();
    uni_env.interrupts.clear();

    jit.Regs() = regs;
    jit.ExtRegs() = vecs;
    jit.SetFpscr(fpscr);
    jit.SetCpsr(cpsr);
    jit.ClearCache();
    uni.SetRegisters(regs);
    uni.SetExtRegs(vecs);
    uni.SetFpscr(fpscr);
    uni.EnableFloatingPointAccess();
    uni.SetCpsr(cpsr);
    uni.ClearPageCache();

    jit_env.ticks_left = ticks_left;
    jit.Run();

    uni_env.ticks_left = instructions.size();  // Unicorn counts thumb instructions weirdly.
    uni.Run();

    SCOPE_FAIL {
        fmt::print("Instruction Listing:\n");
        fmt::print("{}\n", Common::DisassembleAArch32(std::is_same_v<TestEnv, ThumbTestEnv>, initial_pc, (const u8*)instructions.data(), instructions.size() * sizeof(instructions[0])));

        fmt::print("Initial register listing:\n");
        for (size_t i = 0; i < regs.size(); ++i) {
            fmt::print("{:3s}: {:08x}\n", static_cast<A32::Reg>(i), regs[i]);
        }
        for (size_t i = 0; i < vecs.size(); ++i) {
            fmt::print("{:3s}: {:08x}\n", static_cast<A32::ExtReg>(i), vecs[i]);
        }
        fmt::print("cpsr {:08x}\n", cpsr);
        fmt::print("fpcr {:08x}\n", fpscr);
        fmt::print("fpcr.AHP   {}\n", FP::FPCR{fpscr}.AHP());
        fmt::print("fpcr.DN    {}\n", FP::FPCR{fpscr}.DN());
        fmt::print("fpcr.FZ    {}\n", FP::FPCR{fpscr}.FZ());
        fmt::print("fpcr.RMode {}\n", static_cast<size_t>(FP::FPCR{fpscr}.RMode()));
        fmt::print("fpcr.FZ16  {}\n", FP::FPCR{fpscr}.FZ16());
        fmt::print("\n");

        fmt::print("Final register listing:\n");
        fmt::print("     unicorn  dynarmic\n");
        const auto uni_regs = uni.GetRegisters();
        for (size_t i = 0; i < regs.size(); ++i) {
            fmt::print("{:3s}: {:08x} {:08x} {}\n", static_cast<A32::Reg>(i), uni_regs[i], jit.Regs()[i], uni_regs[i] != jit.Regs()[i] ? "*" : "");
        }
        const auto uni_ext_regs = uni.GetExtRegs();
        for (size_t i = 0; i < vecs.size(); ++i) {
            fmt::print("s{:2d}: {:08x} {:08x} {}\n", static_cast<size_t>(i), uni_ext_regs[i], jit.ExtRegs()[i], uni_ext_regs[i] != jit.ExtRegs()[i] ? "*" : "");
        }
        fmt::print("cpsr {:08x} {:08x} {}\n", uni.GetCpsr(), jit.Cpsr(), uni.GetCpsr() != jit.Cpsr() ? "*" : "");
        fmt::print("fpsr {:08x} {:08x} {}\n", uni.GetFpscr(), jit.Fpscr(), (uni.GetFpscr() & 0xF0000000) != (jit.Fpscr() & 0xF0000000) ? "*" : "");
        fmt::print("\n");

        fmt::print("Modified memory:\n");
        fmt::print("                 uni dyn\n");
        auto uni_iter = uni_env.modified_memory.begin();
        auto jit_iter = jit_env.modified_memory.begin();
        while (uni_iter != uni_env.modified_memory.end() || jit_iter != jit_env.modified_memory.end()) {
            if (uni_iter == uni_env.modified_memory.end() || (jit_iter != jit_env.modified_memory.end() && uni_iter->first > jit_iter->first)) {
                fmt::print("{:08x}:    {:02x} *\n", jit_iter->first, jit_iter->second);
                jit_iter++;
            } else if (jit_iter == jit_env.modified_memory.end() || jit_iter->first > uni_iter->first) {
                fmt::print("{:08x}: {:02x}    *\n", uni_iter->first, uni_iter->second);
                uni_iter++;
            } else if (uni_iter->first == jit_iter->first) {
                fmt::print("{:08x}: {:02x} {:02x} {}\n", uni_iter->first, uni_iter->second, jit_iter->second, uni_iter->second != jit_iter->second ? "*" : "");
                uni_iter++;
                jit_iter++;
            }
        }
        fmt::print("\n");

        fmt::print("x86_64:\n");
        jit.DumpDisassembly();

        fmt::print("Interrupts:\n");
        for (const auto& i : uni_env.interrupts) {
            std::puts(i.c_str());
        }
    };

    REQUIRE(uni_env.code_mem_modified_by_guest == jit_env.code_mem_modified_by_guest);
    if (uni_env.code_mem_modified_by_guest) {
        return;
    }

    // Qemu doesn't do Thumb transitions??
    {
        const u32 uni_pc = uni.GetPC();
        const bool is_thumb = (jit.Cpsr() & (1 << 5)) != 0;
        const u32 new_uni_pc = uni_pc & (is_thumb ? 0xFFFFFFFE : 0xFFFFFFFC);
        uni.SetPC(new_uni_pc);
    }

    if (uni.GetRegisters()[15] > jit.Regs()[15]) {
        int trials = 0;
        while (jit.Regs()[15] >= initial_pc && jit.Regs()[15] < expected_end_pc && trials++ < 100 && uni.GetRegisters()[15] != jit.Regs()[15]) {
            fmt::print("Warning: Possible unicorn overrrun, attempt recovery\n");
            jit.Step();
        }
    }

    REQUIRE(uni.GetRegisters() == jit.Regs());
    REQUIRE(uni.GetExtRegs() == jit.ExtRegs());
    REQUIRE((uni.GetCpsr() & 0xFFFFFDDF) == (jit.Cpsr() & 0xFFFFFDDF));
    REQUIRE((uni.GetFpscr() & 0xF8000000) == (jit.Fpscr() & 0xF8000000));
    REQUIRE(uni_env.modified_memory == jit_env.modified_memory);
    REQUIRE(uni_env.interrupts.empty());
}
}  // Anonymous namespace

TEST_CASE("A32: Single random arm instruction", "[arm]") {
    ArmTestEnv jit_env{};
    ArmTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ArmTestEnv> uni{uni_env};

    A32Unicorn<ArmTestEnv>::RegisterArray regs;
    A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg;
    std::vector<u32> instructions(1);

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10;
        const u32 fpcr = RandomFpcr();

        instructions[0] = GenRandomArmInst(start_address, true);

        INFO("Instruction: 0x" << std::hex << instructions[0]);

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 1);
    }
}

TEST_CASE("A32: Small random arm block", "[arm]") {
    ArmTestEnv jit_env{};
    ArmTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ArmTestEnv> uni{uni_env};

    A32Unicorn<ArmTestEnv>::RegisterArray regs;
    A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg;
    std::vector<u32> instructions(5);

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10;
        const u32 fpcr = RandomFpcr();

        instructions[0] = GenRandomArmInst(start_address + 0, false);
        instructions[1] = GenRandomArmInst(start_address + 4, false);
        instructions[2] = GenRandomArmInst(start_address + 8, false);
        instructions[3] = GenRandomArmInst(start_address + 12, false);
        instructions[4] = GenRandomArmInst(start_address + 16, true);

        INFO("Instruction 1: 0x" << std::hex << instructions[0]);
        INFO("Instruction 2: 0x" << std::hex << instructions[1]);
        INFO("Instruction 3: 0x" << std::hex << instructions[2]);
        INFO("Instruction 4: 0x" << std::hex << instructions[3]);
        INFO("Instruction 5: 0x" << std::hex << instructions[4]);

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 5);
    }
}

TEST_CASE("A32: Large random arm block", "[arm]") {
    ArmTestEnv jit_env{};
    ArmTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ArmTestEnv> uni{uni_env};

    A32Unicorn<ArmTestEnv>::RegisterArray regs;
    A32Unicorn<ArmTestEnv>::ExtRegArray ext_reg;

    constexpr size_t instruction_count = 100;
    std::vector<u32> instructions(instruction_count);

    for (size_t iteration = 0; iteration < 10000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u64 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x10;
        const u32 fpcr = RandomFpcr();

        for (size_t j = 0; j < instruction_count; ++j) {
            instructions[j] = GenRandomArmInst(start_address + j * 4, j == instruction_count - 1);
        }

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 100);
    }
}

TEST_CASE("A32: Single random thumb instruction", "[thumb]") {
    ThumbTestEnv jit_env{};
    ThumbTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ThumbTestEnv> uni{uni_env};

    A32Unicorn<ThumbTestEnv>::RegisterArray regs;
    A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg;
    std::vector<u16> instructions;

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0;
        const u32 fpcr = RandomFpcr();

        instructions = GenRandomThumbInst(start_address, true);

        INFO("Instruction: 0x" << std::hex << instructions[0]);

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 1);
    }
}

TEST_CASE("A32: Single random thumb instruction (offset)", "[thumb]") {
    ThumbTestEnv jit_env{};
    ThumbTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ThumbTestEnv> uni{uni_env};

    A32Unicorn<ThumbTestEnv>::RegisterArray regs;
    A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg;
    std::vector<u16> instructions;

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0;
        const u32 fpcr = RandomFpcr();

        instructions.clear();
        instructions.push_back(0xbf00);  // NOP
        const std::vector<u16> inst = GenRandomThumbInst(start_address + 2, true);
        instructions.insert(instructions.end(), inst.begin(), inst.end());

        INFO("Instruction: 0x" << std::hex << inst[0]);

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 2);
    }
}

TEST_CASE("A32: Small random thumb block", "[thumb]") {
    ThumbTestEnv jit_env{};
    ThumbTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ThumbTestEnv> uni{uni_env};

    A32Unicorn<ThumbTestEnv>::RegisterArray regs;
    A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg;
    std::vector<u16> instructions;

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0;
        const u32 fpcr = RandomFpcr();

        instructions.clear();
        for (size_t i = 0; i < 5; i++) {
            const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, i == 4);
            instructions.insert(instructions.end(), inst.begin(), inst.end());
        }

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, 5);
    }
}

TEST_CASE("A32: Test thumb IT instruction", "[thumb]") {
    ThumbTestEnv jit_env{};
    ThumbTestEnv uni_env{};

    Dynarmic::A32::Jit jit{GetUserConfig(jit_env)};
    A32Unicorn<ThumbTestEnv> uni{uni_env};

    A32Unicorn<ThumbTestEnv>::RegisterArray regs;
    A32Unicorn<ThumbTestEnv>::ExtRegArray ext_reg;
    std::vector<u16> instructions;

    for (size_t iteration = 0; iteration < 100000; ++iteration) {
        std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
        std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });

        const size_t pre_instructions = RandInt<size_t>(0, 3);
        const size_t post_instructions = RandInt<size_t>(5, 8);

        const u32 start_address = 100;
        const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0;
        const u32 fpcr = RandomFpcr();

        instructions.clear();

        for (size_t i = 0; i < pre_instructions; i++) {
            const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, false);
            instructions.insert(instructions.end(), inst.begin(), inst.end());
        }

        // Emit IT instruction
        A32::ITState it_state = [&] {
            while (true) {
                const u16 imm8 = RandInt<u16>(0, 0xFF);
                if (mcl::bit::get_bits<0, 3>(imm8) == 0b0000 || mcl::bit::get_bits<4, 7>(imm8) == 0b1111 || (mcl::bit::get_bits<4, 7>(imm8) == 0b1110 && mcl::bit::count_ones(mcl::bit::get_bits<0, 3>(imm8)) != 1)) {
                    continue;
                }
                instructions.push_back(0b1011111100000000 | imm8);
                return A32::ITState{static_cast<u8>(imm8)};
            }
        }();

        for (size_t i = 0; i < post_instructions; i++) {
            const std::vector<u16> inst = GenRandomThumbInst(start_address + instructions.size() * 2, i == post_instructions - 1, it_state);
            instructions.insert(instructions.end(), inst.begin(), inst.end());
            it_state = it_state.Advance();
        }

        regs[15] = start_address;
        RunTestInstance(jit, uni, jit_env, uni_env, regs, ext_reg, instructions, cpsr, fpcr, pre_instructions + 1 + post_instructions);
    }
}