// Copyright 2010 Google LLC // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google LLC nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // fast_source_line_resolver.cc: FastSourceLineResolver is a concrete class that // implements SourceLineResolverInterface. Both FastSourceLineResolver and // BasicSourceLineResolver inherit from SourceLineResolverBase class to reduce // code redundancy. // // See fast_source_line_resolver.h and fast_source_line_resolver_types.h // for more documentation. // // Author: Siyang Xie (lambxsy@google.com) #ifdef HAVE_CONFIG_H #include <config.h> // Must come first #endif #include "google_breakpad/processor/fast_source_line_resolver.h" #include "processor/fast_source_line_resolver_types.h" #include <cassert> #include <map> #include <string> #include <utility> #include "common/scoped_ptr.h" #include "common/using_std_string.h" #include "processor/logging.h" #include "processor/module_factory.h" #include "processor/simple_serializer-inl.h" using std::deque; using std::unique_ptr; namespace google_breakpad { FastSourceLineResolver::FastSourceLineResolver() : SourceLineResolverBase(new FastModuleFactory) { } bool FastSourceLineResolver::ShouldDeleteMemoryBufferAfterLoadModule() { return false; } void FastSourceLineResolver::Module::LookupAddress( StackFrame* frame, std::deque<std::unique_ptr<StackFrame>>* inlined_frames) const { MemAddr address = frame->instruction - frame->module->base_address(); // First, look for a FUNC record that covers address. Use // RetrieveNearestRange instead of RetrieveRange so that, if there // is no such function, we can use the next function to bound the // extent of the PUBLIC symbol we find, below. This does mean we // need to check that address indeed falls within the function we // find; do the range comparison in an overflow-friendly way. scoped_ptr<Function> func(new Function); const Function* func_ptr = 0; scoped_ptr<PublicSymbol> public_symbol(new PublicSymbol); const PublicSymbol* public_symbol_ptr = 0; MemAddr function_base; MemAddr function_size; MemAddr public_address; if (functions_.RetrieveNearestRange(address, func_ptr, &function_base, &function_size) && address >= function_base && address - function_base < function_size) { func->CopyFrom(func_ptr); frame->function_name = func->name; frame->function_base = frame->module->base_address() + function_base; frame->is_multiple = func->is_multiple; scoped_ptr<Line> line(new Line); const Line* line_ptr = 0; MemAddr line_base; if (func->lines.RetrieveRange(address, line_ptr, &line_base, NULL)) { line->CopyFrom(line_ptr); FileMap::iterator it = files_.find(line->source_file_id); if (it != files_.end()) { frame->source_file_name = files_.find(line->source_file_id).GetValuePtr(); } frame->source_line = line->line; frame->source_line_base = frame->module->base_address() + line_base; } // Check if this is inlined function call. if (inlined_frames) { ConstructInlineFrames(frame, address, func->inlines, inlined_frames); } } else if (public_symbols_.Retrieve(address, public_symbol_ptr, &public_address) && (!func_ptr || public_address > function_base)) { public_symbol->CopyFrom(public_symbol_ptr); frame->function_name = public_symbol->name; frame->function_base = frame->module->base_address() + public_address; frame->is_multiple = public_symbol->is_multiple; } } void FastSourceLineResolver::Module::ConstructInlineFrames( StackFrame* frame, MemAddr address, const StaticContainedRangeMap<MemAddr, char>& inline_map, std::deque<std::unique_ptr<StackFrame>>* inlined_frames) const { std::vector<const char*> inline_ptrs; if (!inline_map.RetrieveRanges(address, inline_ptrs)) { return; } for (const char* inline_ptr : inline_ptrs) { scoped_ptr<Inline> in(new Inline); in->CopyFrom(inline_ptr); unique_ptr<StackFrame> new_frame = unique_ptr<StackFrame>(new StackFrame(*frame)); auto origin_iter = inline_origins_.find(in->origin_id); if (origin_iter != inline_origins_.end()) { scoped_ptr<InlineOrigin> origin(new InlineOrigin); origin->CopyFrom(origin_iter.GetValuePtr()); new_frame->function_name = origin->name; } else { new_frame->function_name = "<name omitted>"; } // Store call site file and line in current frame, which will be updated // later. new_frame->source_line = in->call_site_line; if (in->has_call_site_file_id) { auto file_iter = files_.find(in->call_site_file_id); if (file_iter != files_.end()) { new_frame->source_file_name = file_iter.GetValuePtr(); } } // Use the starting adress of the inlined range as inlined function base. new_frame->function_base = new_frame->module->base_address(); for (const auto& range : in->inline_ranges) { if (address >= range.first && address < range.first + range.second) { new_frame->function_base += range.first; break; } } new_frame->trust = StackFrame::FRAME_TRUST_INLINE; // The inlines vector has an order from innermost entry to outermost entry. // By push_back, we will have inlined_frames with the same order. inlined_frames->push_back(std::move(new_frame)); } // Update the source file and source line for each inlined frame. if (!inlined_frames->empty()) { string parent_frame_source_file_name = frame->source_file_name; int parent_frame_source_line = frame->source_line; frame->source_file_name = inlined_frames->back()->source_file_name; frame->source_line = inlined_frames->back()->source_line; for (unique_ptr<StackFrame>& inlined_frame : *inlined_frames) { std::swap(inlined_frame->source_file_name, parent_frame_source_file_name); std::swap(inlined_frame->source_line, parent_frame_source_line); } } } // WFI: WindowsFrameInfo. // Returns a WFI object reading from a raw memory chunk of data WindowsFrameInfo FastSourceLineResolver::CopyWFI(const char* raw) { const WindowsFrameInfo::StackInfoTypes type = static_cast<const WindowsFrameInfo::StackInfoTypes>( *reinterpret_cast<const int32_t*>(raw)); // The first 8 bytes of int data are unused. // They correspond to "StackInfoTypes type_;" and "int valid;" // data member of WFI. const uint32_t* para_uint32 = reinterpret_cast<const uint32_t*>( raw + 2 * sizeof(int32_t)); uint32_t prolog_size = para_uint32[0];; uint32_t epilog_size = para_uint32[1]; uint32_t parameter_size = para_uint32[2]; uint32_t saved_register_size = para_uint32[3]; uint32_t local_size = para_uint32[4]; uint32_t max_stack_size = para_uint32[5]; const char* boolean = reinterpret_cast<const char*>(para_uint32 + 6); bool allocates_base_pointer = (*boolean != 0); string program_string = boolean + 1; return WindowsFrameInfo(type, prolog_size, epilog_size, parameter_size, saved_register_size, local_size, max_stack_size, allocates_base_pointer, program_string); } // Loads a map from the given buffer in char* type. // Does NOT take ownership of mem_buffer. // In addition, treat mem_buffer as const char*. bool FastSourceLineResolver::Module::LoadMapFromMemory( char* memory_buffer, size_t memory_buffer_size) { if (!memory_buffer) return false; // Read the "is_corrupt" flag. const char* mem_buffer = memory_buffer; mem_buffer = SimpleSerializer<bool>::Read(mem_buffer, &is_corrupt_); const uint32_t* map_sizes = reinterpret_cast<const uint32_t*>(mem_buffer); unsigned int header_size = kNumberMaps_ * sizeof(unsigned int); // offsets[]: an array of offset addresses (with respect to mem_buffer), // for each "Static***Map" component of Module. // "Static***Map": static version of std::map or map wrapper, i.e., StaticMap, // StaticAddressMap, StaticContainedRangeMap, and StaticRangeMap. unsigned int offsets[kNumberMaps_]; offsets[0] = header_size; for (int i = 1; i < kNumberMaps_; ++i) { offsets[i] = offsets[i - 1] + map_sizes[i - 1]; } unsigned int expected_size = sizeof(bool) + offsets[kNumberMaps_ - 1] + map_sizes[kNumberMaps_ - 1] + 1; if (expected_size != memory_buffer_size && // Allow for having an extra null terminator. expected_size != memory_buffer_size - 1) { // This could either be a random corruption or the serialization format was // changed without updating the version in kSerializedBreakpadFileExtension. BPLOG(ERROR) << "Memory buffer is either corrupt or an unsupported version" << ", expected size: " << expected_size << ", actual size: " << memory_buffer_size; return false; } BPLOG(INFO) << "Memory buffer size looks good, size: " << memory_buffer_size; // Use pointers to construct Static*Map data members in Module: int map_id = 0; files_ = StaticMap<int, char>(mem_buffer + offsets[map_id++]); functions_ = StaticRangeMap<MemAddr, Function>(mem_buffer + offsets[map_id++]); public_symbols_ = StaticAddressMap<MemAddr, PublicSymbol>(mem_buffer + offsets[map_id++]); for (int i = 0; i < WindowsFrameInfo::STACK_INFO_LAST; ++i) { windows_frame_info_[i] = StaticContainedRangeMap<MemAddr, char>(mem_buffer + offsets[map_id++]); } cfi_initial_rules_ = StaticRangeMap<MemAddr, char>(mem_buffer + offsets[map_id++]); cfi_delta_rules_ = StaticMap<MemAddr, char>(mem_buffer + offsets[map_id++]); inline_origins_ = StaticMap<int, char>(mem_buffer + offsets[map_id++]); return true; } WindowsFrameInfo* FastSourceLineResolver::Module::FindWindowsFrameInfo( const StackFrame* frame) const { MemAddr address = frame->instruction - frame->module->base_address(); scoped_ptr<WindowsFrameInfo> result(new WindowsFrameInfo()); // We only know about WindowsFrameInfo::STACK_INFO_FRAME_DATA and // WindowsFrameInfo::STACK_INFO_FPO. Prefer them in this order. // WindowsFrameInfo::STACK_INFO_FRAME_DATA is the newer type that // includes its own program string. // WindowsFrameInfo::STACK_INFO_FPO is the older type // corresponding to the FPO_DATA struct. See stackwalker_x86.cc. const char* frame_info_ptr; if ((windows_frame_info_[WindowsFrameInfo::STACK_INFO_FRAME_DATA] .RetrieveRange(address, frame_info_ptr)) || (windows_frame_info_[WindowsFrameInfo::STACK_INFO_FPO] .RetrieveRange(address, frame_info_ptr))) { result->CopyFrom(CopyWFI(frame_info_ptr)); return result.release(); } // Even without a relevant STACK line, many functions contain // information about how much space their parameters consume on the // stack. Use RetrieveNearestRange instead of RetrieveRange, so that // we can use the function to bound the extent of the PUBLIC symbol, // below. However, this does mean we need to check that ADDRESS // falls within the retrieved function's range; do the range // comparison in an overflow-friendly way. scoped_ptr<Function> function(new Function); const Function* function_ptr = 0; MemAddr function_base, function_size; if (functions_.RetrieveNearestRange(address, function_ptr, &function_base, &function_size) && address >= function_base && address - function_base < function_size) { function->CopyFrom(function_ptr); result->parameter_size = function->parameter_size; result->valid |= WindowsFrameInfo::VALID_PARAMETER_SIZE; return result.release(); } // PUBLIC symbols might have a parameter size. Use the function we // found above to limit the range the public symbol covers. scoped_ptr<PublicSymbol> public_symbol(new PublicSymbol); const PublicSymbol* public_symbol_ptr = 0; MemAddr public_address; if (public_symbols_.Retrieve(address, public_symbol_ptr, &public_address) && (!function_ptr || public_address > function_base)) { public_symbol->CopyFrom(public_symbol_ptr); result->parameter_size = public_symbol->parameter_size; } return NULL; } CFIFrameInfo* FastSourceLineResolver::Module::FindCFIFrameInfo( const StackFrame* frame) const { MemAddr address = frame->instruction - frame->module->base_address(); MemAddr initial_base, initial_size; const char* initial_rules = NULL; // Find the initial rule whose range covers this address. That // provides an initial set of register recovery rules. Then, walk // forward from the initial rule's starting address to frame's // instruction address, applying delta rules. if (!cfi_initial_rules_.RetrieveRange(address, initial_rules, &initial_base, &initial_size)) { return NULL; } // Create a frame info structure, and populate it with the rules from // the STACK CFI INIT record. scoped_ptr<CFIFrameInfo> rules(new CFIFrameInfo()); if (!ParseCFIRuleSet(initial_rules, rules.get())) return NULL; // Find the first delta rule that falls within the initial rule's range. StaticMap<MemAddr, char>::iterator delta = cfi_delta_rules_.lower_bound(initial_base); // Apply delta rules up to and including the frame's address. while (delta != cfi_delta_rules_.end() && delta.GetKey() <= address) { ParseCFIRuleSet(delta.GetValuePtr(), rules.get()); delta++; } return rules.release(); } } // namespace google_breakpad