// Copyright 2013 Google LLC // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google LLC nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // exploitability_linux.cc: Linux specific exploitability engine. // // Provides a guess at the exploitability of the crash for the Linux // platform given a minidump and process_state. // // Author: Matthew Riley #ifdef HAVE_CONFIG_H #include <config.h> // Must come first #endif #include "processor/exploitability_linux.h" #include <string.h> #include "google_breakpad/common/minidump_exception_linux.h" #include "google_breakpad/processor/call_stack.h" #include "google_breakpad/processor/process_state.h" #include "google_breakpad/processor/stack_frame.h" #ifdef __linux__ #include "processor/disassembler_objdump.h" #endif #include "processor/logging.h" namespace { // Prefixes for memory mapping names. constexpr char kHeapPrefix[] = "[heap"; constexpr char kStackPrefix[] = "[stack"; // This function in libc is called if the program was compiled with // -fstack-protector and a function's stack canary changes. constexpr char kStackCheckFailureFunction[] = "__stack_chk_fail"; // This function in libc is called if the program was compiled with // -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime // can determine that the call would overflow the target buffer. constexpr char kBoundsCheckFailureFunction[] = "__chk_fail"; } // namespace namespace google_breakpad { ExploitabilityLinux::ExploitabilityLinux(Minidump* dump, ProcessState* process_state) : Exploitability(dump, process_state), enable_objdump_(false) { } ExploitabilityLinux::ExploitabilityLinux(Minidump* dump, ProcessState* process_state, bool enable_objdump) : Exploitability(dump, process_state), enable_objdump_(enable_objdump) { } ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() { // Check the crashing thread for functions suggesting a buffer overflow or // stack smash. if (process_state_->requesting_thread() != -1) { CallStack* crashing_thread = process_state_->threads()->at(process_state_->requesting_thread()); const vector<StackFrame*>& crashing_thread_frames = *crashing_thread->frames(); for (size_t i = 0; i < crashing_thread_frames.size(); ++i) { if (crashing_thread_frames[i]->function_name == kStackCheckFailureFunction) { return EXPLOITABILITY_HIGH; } if (crashing_thread_frames[i]->function_name == kBoundsCheckFailureFunction) { return EXPLOITABILITY_HIGH; } } } // Getting exception data. (It should exist for all minidumps.) MinidumpException* exception = dump_->GetException(); if (exception == NULL) { BPLOG(INFO) << "No exception record."; return EXPLOITABILITY_ERR_PROCESSING; } const MDRawExceptionStream* raw_exception_stream = exception->exception(); if (raw_exception_stream == NULL) { BPLOG(INFO) << "No raw exception stream."; return EXPLOITABILITY_ERR_PROCESSING; } // Checking for benign exceptions that caused the crash. if (this->BenignCrashTrigger(raw_exception_stream)) { return EXPLOITABILITY_NONE; } // Check if the instruction pointer is in a valid instruction region // by finding if it maps to an executable part of memory. uint64_t instruction_ptr = 0; uint64_t stack_ptr = 0; const MinidumpContext* context = exception->GetContext(); if (context == NULL) { BPLOG(INFO) << "No exception context."; return EXPLOITABILITY_ERR_PROCESSING; } // Getting the instruction pointer. if (!context->GetInstructionPointer(&instruction_ptr)) { BPLOG(INFO) << "Failed to retrieve instruction pointer."; return EXPLOITABILITY_ERR_PROCESSING; } // Getting the stack pointer. if (!context->GetStackPointer(&stack_ptr)) { BPLOG(INFO) << "Failed to retrieve stack pointer."; return EXPLOITABILITY_ERR_PROCESSING; } // Checking for the instruction pointer in a valid instruction region, // a misplaced stack pointer, and an executable stack or heap. if (!this->InstructionPointerInCode(instruction_ptr) || this->StackPointerOffStack(stack_ptr) || this->ExecutableStackOrHeap()) { return EXPLOITABILITY_HIGH; } // Check for write to read only memory or invalid memory, shelling out // to objdump is enabled. if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) { return EXPLOITABILITY_HIGH; } // There was no strong evidence suggesting exploitability, but the minidump // does not appear totally benign either. return EXPLOITABILITY_INTERESTING; } bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) { #ifndef __linux__ BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method."; return false; #else // Get memory region containing instruction pointer. MinidumpMemoryList* memory_list = dump_->GetMemoryList(); MinidumpMemoryRegion* memory_region = memory_list ? memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL; if (!memory_region) { BPLOG(INFO) << "No memory region around instruction pointer."; return false; } // Get exception data to find architecture. string architecture = ""; MinidumpException* exception = dump_->GetException(); // This should never evaluate to true, since this should not be reachable // without checking for exception data earlier. if (!exception) { BPLOG(INFO) << "No exception data."; return false; } const MDRawExceptionStream* raw_exception_stream = exception->exception(); const MinidumpContext* context = exception->GetContext(); // This should not evaluate to true, for the same reason mentioned above. if (!raw_exception_stream || !context) { BPLOG(INFO) << "No exception or architecture data."; return false; } DisassemblerObjdump disassembler(context->GetContextCPU(), memory_region, instruction_ptr); if (!disassembler.IsValid()) { BPLOG(INFO) << "Disassembling fault instruction failed."; return false; } // Check if the operation is a write to memory. // First, the instruction must one that can write to memory. auto instruction = disassembler.operation(); if (!instruction.compare("mov") || !instruction.compare("inc") || !instruction.compare("dec") || !instruction.compare("and") || !instruction.compare("or") || !instruction.compare("xor") || !instruction.compare("not") || !instruction.compare("neg") || !instruction.compare("add") || !instruction.compare("sub") || !instruction.compare("shl") || !instruction.compare("shr")) { uint64_t write_address = 0; // Check that the destination is a memory address. CalculateDestAddress will // return false if the destination is not a memory address. if (!disassembler.CalculateDestAddress(*context, write_address)) { return false; } // If the program crashed as a result of a write, the destination of // the write must have been an address that did not permit writing. // However, if the address is under 4k, due to program protections, // the crash does not suggest exploitability for writes with such a // low target address. return write_address > 4096; } else { return false; } #endif // __linux__ } bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) { MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList(); // Inconclusive if there are no mappings available. if (!linux_maps_list) { return false; } const MinidumpLinuxMaps* linux_maps = linux_maps_list->GetLinuxMapsForAddress(stack_ptr); // Checks if the stack pointer maps to a valid mapping and if the mapping // is not the stack. If the mapping has no name, it is inconclusive whether // it is off the stack. return !linux_maps || (linux_maps->GetPathname().compare("") && linux_maps->GetPathname().compare( 0, strlen(kStackPrefix), kStackPrefix)); } bool ExploitabilityLinux::ExecutableStackOrHeap() { MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList(); if (linux_maps_list) { for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) { const MinidumpLinuxMaps* linux_maps = linux_maps_list->GetLinuxMapsAtIndex(i); // Check for executable stack or heap for each mapping. if (linux_maps && (!linux_maps->GetPathname().compare( 0, strlen(kStackPrefix), kStackPrefix) || !linux_maps->GetPathname().compare( 0, strlen(kHeapPrefix), kHeapPrefix)) && linux_maps->IsExecutable()) { return true; } } } return false; } bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) { // Get Linux memory mapping from /proc/self/maps. Checking whether the // region the instruction pointer is in has executable permission can tell // whether it is in a valid code region. If there is no mapping for the // instruction pointer, it is indicative that the instruction pointer is // not within a module, which implies that it is outside a valid area. MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList(); const MinidumpLinuxMaps* linux_maps = linux_maps_list ? linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL; return linux_maps ? linux_maps->IsExecutable() : false; } bool ExploitabilityLinux::BenignCrashTrigger( const MDRawExceptionStream* raw_exception_stream) { // Check the cause of crash. // If the exception of the crash is a benign exception, // it is probably not exploitable. switch (raw_exception_stream->exception_record.exception_code) { case MD_EXCEPTION_CODE_LIN_SIGHUP: case MD_EXCEPTION_CODE_LIN_SIGINT: case MD_EXCEPTION_CODE_LIN_SIGQUIT: case MD_EXCEPTION_CODE_LIN_SIGTRAP: case MD_EXCEPTION_CODE_LIN_SIGABRT: case MD_EXCEPTION_CODE_LIN_SIGFPE: case MD_EXCEPTION_CODE_LIN_SIGKILL: case MD_EXCEPTION_CODE_LIN_SIGUSR1: case MD_EXCEPTION_CODE_LIN_SIGUSR2: case MD_EXCEPTION_CODE_LIN_SIGPIPE: case MD_EXCEPTION_CODE_LIN_SIGALRM: case MD_EXCEPTION_CODE_LIN_SIGTERM: case MD_EXCEPTION_CODE_LIN_SIGCHLD: case MD_EXCEPTION_CODE_LIN_SIGCONT: case MD_EXCEPTION_CODE_LIN_SIGSTOP: case MD_EXCEPTION_CODE_LIN_SIGTSTP: case MD_EXCEPTION_CODE_LIN_SIGTTIN: case MD_EXCEPTION_CODE_LIN_SIGTTOU: case MD_EXCEPTION_CODE_LIN_SIGURG: case MD_EXCEPTION_CODE_LIN_SIGXCPU: case MD_EXCEPTION_CODE_LIN_SIGXFSZ: case MD_EXCEPTION_CODE_LIN_SIGVTALRM: case MD_EXCEPTION_CODE_LIN_SIGPROF: case MD_EXCEPTION_CODE_LIN_SIGWINCH: case MD_EXCEPTION_CODE_LIN_SIGIO: case MD_EXCEPTION_CODE_LIN_SIGPWR: case MD_EXCEPTION_CODE_LIN_SIGSYS: case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED: return true; default: return false; } } } // namespace google_breakpad