1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
using ARMeilleure.State;
using NUnit.Framework;
namespace Ryujinx.Tests.Cpu
{
public class CpuTestSimdCrypto32 : CpuTest32
{
[Test, Description("AESD.8 <Qd>, <Qm>")]
public void Aesd_V([Values(0u)] uint rd,
[Values(2u)] uint rm,
[Values(0x7B5B546573745665ul)] ulong valueH,
[Values(0x63746F725D53475Dul)] ulong valueL,
[Random(2)] ulong roundKeyH,
[Random(2)] ulong roundKeyL,
[Values(0x8DCAB9BC035006BCul)] ulong resultH,
[Values(0x8F57161E00CAFD8Dul)] ulong resultL)
{
uint opcode = 0xf3b00340; // AESD.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
});
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESE.8 <Qd>, <Qm>")]
public void Aese_V([Values(0u)] uint rd,
[Values(2u)] uint rm,
[Values(0x7B5B546573745665ul)] ulong valueH,
[Values(0x63746F725D53475Dul)] ulong valueL,
[Random(2)] ulong roundKeyH,
[Random(2)] ulong roundKeyL,
[Values(0x8F92A04DFBED204Dul)] ulong resultH,
[Values(0x4C39B1402192A84Cul)] ulong resultL)
{
uint opcode = 0xf3b00300; // AESE.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v0 = MakeVectorE0E1(roundKeyL ^ valueL, roundKeyH ^ valueH);
V128 v1 = MakeVectorE0E1(roundKeyL, roundKeyH);
ExecutionContext context = SingleOpcode(opcode, v0: v0, v1: v1, runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(roundKeyL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(roundKeyH));
});
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESIMC.8 <Qd>, <Qm>")]
public void Aesimc_V([Values(0u)] uint rd,
[Values(2u, 0u)] uint rm,
[Values(0x8DCAB9DC035006BCul)] ulong valueH,
[Values(0x8F57161E00CAFD8Dul)] ulong valueL,
[Values(0xD635A667928B5EAEul)] ulong resultH,
[Values(0xEEC9CC3BC55F5777ul)] ulong resultL)
{
uint opcode = 0xf3b003c0; // AESIMC.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v = MakeVectorE0E1(valueL, valueH);
ExecutionContext context = SingleOpcode(
opcode,
v0: rm == 0u ? v : default,
v1: rm == 2u ? v : default,
runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
if (rm == 2u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
});
}
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
[Test, Description("AESMC.8 <Qd>, <Qm>")]
public void Aesmc_V([Values(0u)] uint rd,
[Values(2u, 0u)] uint rm,
[Values(0x627A6F6644B109C8ul)] ulong valueH,
[Values(0x2B18330A81C3B3E5ul)] ulong valueL,
[Values(0x7B5B546573745665ul)] ulong resultH,
[Values(0x63746F725D53475Dul)] ulong resultL)
{
uint opcode = 0xf3b00380; // AESMC.8 Q0, Q0
opcode |= ((rm & 0xf) << 0) | ((rm & 0x10) << 1);
opcode |= ((rd & 0xf) << 12) | ((rd & 0x10) << 18);
V128 v = MakeVectorE0E1(valueL, valueH);
ExecutionContext context = SingleOpcode(
opcode,
v0: rm == 0u ? v : default,
v1: rm == 2u ? v : default,
runUnicorn: false);
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(0)), Is.EqualTo(resultL));
Assert.That(GetVectorE1(context.GetV(0)), Is.EqualTo(resultH));
});
if (rm == 2u)
{
Assert.Multiple(() =>
{
Assert.That(GetVectorE0(context.GetV(1)), Is.EqualTo(valueL));
Assert.That(GetVectorE1(context.GetV(1)), Is.EqualTo(valueH));
});
}
// Unicorn does not yet support crypto instructions in A32.
// CompareAgainstUnicorn();
}
}
}
|