aboutsummaryrefslogtreecommitdiff
path: root/src/Ryujinx.HLE/HOS/Kernel/Threading/KScheduler.cs
blob: 8ef77902c28d33d0dff89c14f309ebd3a649f84a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
using Ryujinx.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using System;
using System.Numerics;
using System.Threading;

namespace Ryujinx.HLE.HOS.Kernel.Threading
{
    partial class KScheduler : IDisposable
    {
        public const int PrioritiesCount = 64;
        public const int CpuCoresCount = 4;

        private const int RoundRobinTimeQuantumMs = 10;

        private static readonly int[] _preemptionPriorities = { 59, 59, 59, 63 };

        private static readonly int[] _srcCoresHighestPrioThreads = new int[CpuCoresCount];

        private readonly KernelContext _context;
        private readonly int _coreId;

        private struct SchedulingState
        {
            public volatile bool NeedsScheduling;
            public volatile KThread SelectedThread;
        }

        private SchedulingState _state;

        private KThread _previousThread;
        private KThread _currentThread;

        private int _coreIdleLock;
        private bool _idleSignalled = true;
        private bool _idleActive = true;
        private long _idleTimeRunning;

        public KThread PreviousThread => _previousThread;
        public KThread CurrentThread => _currentThread;
        public long LastContextSwitchTime { get; private set; }
        public long TotalIdleTimeTicks => _idleTimeRunning;

        public KScheduler(KernelContext context, int coreId)
        {
            _context = context;
            _coreId = coreId;

            _currentThread = null;
        }

        public static ulong SelectThreads(KernelContext context)
        {
            if (context.ThreadReselectionRequested)
            {
                return SelectThreadsImpl(context);
            }
            else
            {
                return 0UL;
            }
        }

        private static ulong SelectThreadsImpl(KernelContext context)
        {
            context.ThreadReselectionRequested = false;

            ulong scheduledCoresMask = 0UL;

            for (int core = 0; core < CpuCoresCount; core++)
            {
                KThread thread = context.PriorityQueue.ScheduledThreadsFirstOrDefault(core);

                if (thread != null &&
                    thread.Owner != null &&
                    thread.Owner.PinnedThreads[core] != null &&
                    thread.Owner.PinnedThreads[core] != thread)
                {
                    KThread candidate = thread.Owner.PinnedThreads[core];

                    if (candidate.KernelWaitersCount == 0 && !KProcess.IsExceptionUserThread(candidate))
                    {
                        if (candidate.SchedFlags == ThreadSchedState.Running)
                        {
                            thread = candidate;
                        }
                        else
                        {
                            thread = null;
                        }
                    }
                }

                scheduledCoresMask |= context.Schedulers[core].SelectThread(thread);
            }

            for (int core = 0; core < CpuCoresCount; core++)
            {
                // If the core is not idle (there's already a thread running on it),
                // then we don't need to attempt load balancing.
                if (context.PriorityQueue.HasScheduledThreads(core))
                {
                    continue;
                }

                Array.Fill(_srcCoresHighestPrioThreads, 0);

                int srcCoresHighestPrioThreadsCount = 0;

                KThread dst = null;

                // Select candidate threads that could run on this core.
                // Give preference to threads that are not yet selected.
                foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
                {
                    if (suggested.ActiveCore < 0 || suggested != context.Schedulers[suggested.ActiveCore]._state.SelectedThread)
                    {
                        dst = suggested;
                        break;
                    }

                    _srcCoresHighestPrioThreads[srcCoresHighestPrioThreadsCount++] = suggested.ActiveCore;
                }

                // Not yet selected candidate found.
                if (dst != null)
                {
                    // Priorities < 2 are used for the kernel message dispatching
                    // threads, we should skip load balancing entirely.
                    if (dst.DynamicPriority >= 2)
                    {
                        context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);

                        scheduledCoresMask |= context.Schedulers[core].SelectThread(dst);
                    }

                    continue;
                }

                // All candidates are already selected, choose the best one
                // (the first one that doesn't make the source core idle if moved).
                for (int index = 0; index < srcCoresHighestPrioThreadsCount; index++)
                {
                    int srcCore = _srcCoresHighestPrioThreads[index];

                    KThread src = context.PriorityQueue.ScheduledThreadsElementAtOrDefault(srcCore, 1);

                    if (src != null)
                    {
                        // Run the second thread on the queue on the source core,
                        // move the first one to the current core.
                        KThread origSelectedCoreSrc = context.Schedulers[srcCore]._state.SelectedThread;

                        scheduledCoresMask |= context.Schedulers[srcCore].SelectThread(src);

                        context.PriorityQueue.TransferToCore(origSelectedCoreSrc.DynamicPriority, core, origSelectedCoreSrc);

                        scheduledCoresMask |= context.Schedulers[core].SelectThread(origSelectedCoreSrc);
                    }
                }
            }

            return scheduledCoresMask;
        }

        private ulong SelectThread(KThread nextThread)
        {
            KThread previousThread = _state.SelectedThread;

            if (previousThread != nextThread)
            {
                if (previousThread != null)
                {
                    previousThread.LastScheduledTime = PerformanceCounter.ElapsedTicks;
                }

                _state.SelectedThread = nextThread;
                _state.NeedsScheduling = true;
                return 1UL << _coreId;
            }
            else
            {
                return 0UL;
            }
        }

        public static void EnableScheduling(KernelContext context, ulong scheduledCoresMask)
        {
            KScheduler currentScheduler = context.Schedulers[KernelStatic.GetCurrentThread().CurrentCore];

            // Note that "RescheduleCurrentCore" will block, so "RescheduleOtherCores" must be done first.
            currentScheduler.RescheduleOtherCores(scheduledCoresMask);
            currentScheduler.RescheduleCurrentCore();
        }

        public static void EnableSchedulingFromForeignThread(KernelContext context, ulong scheduledCoresMask)
        {
            RescheduleOtherCores(context, scheduledCoresMask);
        }

        private void RescheduleCurrentCore()
        {
            if (_state.NeedsScheduling)
            {
                Schedule();
            }
        }

        private void RescheduleOtherCores(ulong scheduledCoresMask)
        {
            RescheduleOtherCores(_context, scheduledCoresMask & ~(1UL << _coreId));
        }

        private static void RescheduleOtherCores(KernelContext context, ulong scheduledCoresMask)
        {
            while (scheduledCoresMask != 0)
            {
                int coreToSignal = BitOperations.TrailingZeroCount(scheduledCoresMask);

                KThread threadToSignal = context.Schedulers[coreToSignal]._currentThread;

                // Request the thread running on that core to stop and reschedule, if we have one.
                threadToSignal?.Context.RequestInterrupt();

                // If the core is idle, ensure that the idle thread is awaken.
                context.Schedulers[coreToSignal].NotifyIdleThread();

                scheduledCoresMask &= ~(1UL << coreToSignal);
            }
        }

        private void ActivateIdleThread()
        {
            while (Interlocked.CompareExchange(ref _coreIdleLock, 1, 0) != 0)
            {
                Thread.SpinWait(1);
            }

            Thread.MemoryBarrier();

            // Signals that idle thread is now active on this core.
            _idleActive = true;

            TryLeaveIdle();

            Interlocked.Exchange(ref _coreIdleLock, 0);
        }

        private void NotifyIdleThread()
        {
            while (Interlocked.CompareExchange(ref _coreIdleLock, 1, 0) != 0)
            {
                Thread.SpinWait(1);
            }

            Thread.MemoryBarrier();

            // Signals that the idle core may be able to exit idle.
            _idleSignalled = true;

            TryLeaveIdle();

            Interlocked.Exchange(ref _coreIdleLock, 0);
        }

        public void TryLeaveIdle()
        {
            if (_idleSignalled && _idleActive)
            {
                _state.NeedsScheduling = false;
                Thread.MemoryBarrier();
                KThread nextThread = PickNextThread(null, _state.SelectedThread);

                if (nextThread != null)
                {
                    _idleActive = false;
                    nextThread.SchedulerWaitEvent.Set();
                }

                _idleSignalled = false;
            }
        }

        public void Schedule()
        {
            _state.NeedsScheduling = false;
            Thread.MemoryBarrier();
            KThread currentThread = KernelStatic.GetCurrentThread();
            KThread selectedThread = _state.SelectedThread;

            // If the thread is already scheduled and running on the core, we have nothing to do.
            if (currentThread == selectedThread)
            {
                return;
            }

            currentThread.SchedulerWaitEvent.Reset();
            currentThread.ThreadContext.Unlock();

            // Wake all the threads that might be waiting until this thread context is unlocked.
            for (int core = 0; core < CpuCoresCount; core++)
            {
                _context.Schedulers[core].NotifyIdleThread();
            }

            KThread nextThread = PickNextThread(KernelStatic.GetCurrentThread(), selectedThread);

            if (currentThread.Context.Running)
            {
                // Wait until this thread is scheduled again, and allow the next thread to run.

                if (nextThread == null)
                {
                    ActivateIdleThread();
                    currentThread.SchedulerWaitEvent.WaitOne();
                }
                else
                {
                    WaitHandle.SignalAndWait(nextThread.SchedulerWaitEvent, currentThread.SchedulerWaitEvent);
                }
            }
            else
            {
                // Allow the next thread to run.

                if (nextThread == null)
                {
                    ActivateIdleThread();
                }
                else
                {
                    nextThread.SchedulerWaitEvent.Set();
                }

                // We don't need to wait since the thread is exiting, however we need to
                // make sure this thread will never call the scheduler again, since it is
                // no longer assigned to a core.
                currentThread.MakeUnschedulable();

                // Just to be sure, set the core to a invalid value.
                // This will trigger a exception if it attempts to call schedule again,
                // rather than leaving the scheduler in a invalid state.
                currentThread.CurrentCore = -1;
            }
        }

        private KThread PickNextThread(KThread currentThread, KThread selectedThread)
        {
            while (true)
            {
                if (selectedThread != null)
                {
                    // Try to run the selected thread.
                    // We need to acquire the context lock to be sure the thread is not
                    // already running on another core. If it is, then we return here
                    // and the caller should try again once there is something available for scheduling.
                    // The thread currently running on the core should have been requested to
                    // interrupt so this is not expected to take long.
                    // The idle thread must also be paused if we are scheduling a thread
                    // on the core, as the scheduled thread will handle the next switch.
                    if (selectedThread.ThreadContext.Lock())
                    {
                        SwitchTo(currentThread, selectedThread);

                        if (!_state.NeedsScheduling)
                        {
                            return selectedThread;
                        }

                        selectedThread.ThreadContext.Unlock();
                    }
                    else
                    {
                        return null;
                    }
                }
                else
                {
                    // The core is idle now, make sure that the idle thread can run
                    // and switch the core when a thread is available.
                    SwitchTo(currentThread, null);
                    return null;
                }

                _state.NeedsScheduling = false;
                Thread.MemoryBarrier();
                selectedThread = _state.SelectedThread;
            }
        }

        private void SwitchTo(KThread currentThread, KThread nextThread)
        {
            KProcess currentProcess = currentThread?.Owner;

            if (currentThread != nextThread)
            {
                long previousTicks = LastContextSwitchTime;
                long currentTicks = PerformanceCounter.ElapsedTicks;
                long ticksDelta = currentTicks - previousTicks;

                if (currentThread == null)
                {
                    Interlocked.Add(ref _idleTimeRunning, ticksDelta);
                }
                else
                {
                    currentThread.AddCpuTime(ticksDelta);
                }

                currentProcess?.AddCpuTime(ticksDelta);

                LastContextSwitchTime = currentTicks;

                if (currentProcess != null)
                {
                    _previousThread = !currentThread.TerminationRequested && currentThread.ActiveCore == _coreId ? currentThread : null;
                }
                else if (currentThread == null)
                {
                    _previousThread = null;
                }
            }

            if (nextThread != null && nextThread.CurrentCore != _coreId)
            {
                nextThread.CurrentCore = _coreId;
            }

            _currentThread = nextThread;
        }

        public static void PreemptionThreadLoop(KernelContext context)
        {
            while (context.Running)
            {
                context.CriticalSection.Enter();

                for (int core = 0; core < CpuCoresCount; core++)
                {
                    RotateScheduledQueue(context, core, _preemptionPriorities[core]);
                }

                context.CriticalSection.Leave();

                Thread.Sleep(RoundRobinTimeQuantumMs);
            }
        }

        private static void RotateScheduledQueue(KernelContext context, int core, int prio)
        {
            KThread selectedThread = context.PriorityQueue.ScheduledThreadsWithDynamicPriorityFirstOrDefault(core, prio);
            KThread nextThread = null;

            // Yield priority queue.
            if (selectedThread != null)
            {
                nextThread = context.PriorityQueue.Reschedule(prio, core, selectedThread);
            }

            static KThread FirstSuitableCandidateOrDefault(KernelContext context, int core, KThread selectedThread, KThread nextThread, Predicate<KThread> predicate)
            {
                foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
                {
                    int suggestedCore = suggested.ActiveCore;
                    if (suggestedCore >= 0)
                    {
                        KThread selectedSuggestedCore = context.PriorityQueue.ScheduledThreadsFirstOrDefault(suggestedCore);

                        if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
                        {
                            continue;
                        }
                    }

                    // If the candidate was scheduled after the current thread, then it's not worth it.
                    if (nextThread == selectedThread ||
                        nextThread == null ||
                        nextThread.LastScheduledTime >= suggested.LastScheduledTime)
                    {
                        if (predicate(suggested))
                        {
                            return suggested;
                        }
                    }
                }

                return null;
            }

            // Select candidate threads that could run on this core.
            // Only take into account threads that are not yet selected.
            KThread dst = FirstSuitableCandidateOrDefault(context, core, selectedThread, nextThread, x => x.DynamicPriority == prio);

            if (dst != null)
            {
                context.PriorityQueue.TransferToCore(prio, core, dst);
            }

            // If the priority of the currently selected thread is lower or same as the preemption priority,
            // then try to migrate a thread with lower priority.
            KThread bestCandidate = context.PriorityQueue.ScheduledThreadsFirstOrDefault(core);

            if (bestCandidate != null && bestCandidate.DynamicPriority >= prio)
            {
                dst = FirstSuitableCandidateOrDefault(context, core, selectedThread, nextThread, x => x.DynamicPriority < bestCandidate.DynamicPriority);

                if (dst != null)
                {
                    context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
                }
            }

            context.ThreadReselectionRequested = true;
        }

        public static void Yield(KernelContext context)
        {
            KThread currentThread = KernelStatic.GetCurrentThread();

            if (!currentThread.IsSchedulable)
            {
                return;
            }

            context.CriticalSection.Enter();

            if (currentThread.SchedFlags != ThreadSchedState.Running)
            {
                context.CriticalSection.Leave();
                return;
            }

            KThread nextThread = context.PriorityQueue.Reschedule(currentThread.DynamicPriority, currentThread.ActiveCore, currentThread);

            if (nextThread != currentThread)
            {
                context.ThreadReselectionRequested = true;
            }

            context.CriticalSection.Leave();
        }

        public static void YieldWithLoadBalancing(KernelContext context)
        {
            KThread currentThread = KernelStatic.GetCurrentThread();

            if (!currentThread.IsSchedulable)
            {
                return;
            }

            context.CriticalSection.Enter();

            if (currentThread.SchedFlags != ThreadSchedState.Running)
            {
                context.CriticalSection.Leave();
                return;
            }

            int prio = currentThread.DynamicPriority;
            int core = currentThread.ActiveCore;

            // Move current thread to the end of the queue.
            KThread nextThread = context.PriorityQueue.Reschedule(prio, core, currentThread);

            static KThread FirstSuitableCandidateOrDefault(KernelContext context, int core, KThread nextThread, int lessThanOrEqualPriority)
            {
                foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
                {
                    int suggestedCore = suggested.ActiveCore;
                    if (suggestedCore >= 0)
                    {
                        KThread selectedSuggestedCore = context.Schedulers[suggestedCore]._state.SelectedThread;

                        if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
                        {
                            continue;
                        }
                    }

                    // If the candidate was scheduled after the current thread, then it's not worth it,
                    // unless the priority is higher than the current one.
                    if (suggested.LastScheduledTime <= nextThread.LastScheduledTime ||
                        suggested.DynamicPriority < nextThread.DynamicPriority)
                    {
                        if (suggested.DynamicPriority <= lessThanOrEqualPriority)
                        {
                            return suggested;
                        }
                    }
                }

                return null;
            }

            KThread dst = FirstSuitableCandidateOrDefault(context, core, nextThread, prio);

            if (dst != null)
            {
                context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);

                context.ThreadReselectionRequested = true;
            }
            else if (currentThread != nextThread)
            {
                context.ThreadReselectionRequested = true;
            }

            context.CriticalSection.Leave();
        }

        public static void YieldToAnyThread(KernelContext context)
        {
            KThread currentThread = KernelStatic.GetCurrentThread();

            if (!currentThread.IsSchedulable)
            {
                return;
            }

            context.CriticalSection.Enter();

            if (currentThread.SchedFlags != ThreadSchedState.Running)
            {
                context.CriticalSection.Leave();
                return;
            }

            int core = currentThread.ActiveCore;

            context.PriorityQueue.TransferToCore(currentThread.DynamicPriority, -1, currentThread);

            if (!context.PriorityQueue.HasScheduledThreads(core))
            {
                KThread selectedThread = null;

                foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
                {
                    int suggestedCore = suggested.ActiveCore;

                    if (suggestedCore < 0)
                    {
                        continue;
                    }

                    KThread firstCandidate = context.PriorityQueue.ScheduledThreadsFirstOrDefault(suggestedCore);

                    if (firstCandidate == suggested)
                    {
                        continue;
                    }

                    if (firstCandidate == null || firstCandidate.DynamicPriority >= 2)
                    {
                        context.PriorityQueue.TransferToCore(suggested.DynamicPriority, core, suggested);
                    }

                    selectedThread = suggested;
                    break;
                }

                if (currentThread != selectedThread)
                {
                    context.ThreadReselectionRequested = true;
                }
            }
            else
            {
                context.ThreadReselectionRequested = true;
            }

            context.CriticalSection.Leave();
        }

        public void Dispose()
        {
            // No resources to dispose for now.
        }
    }
}