aboutsummaryrefslogtreecommitdiff
path: root/src/Ryujinx.Graphics.Gpu/Engine/GPFifo/GPFifoClass.cs
blob: cedd824a1aa55975f80ba1a40222af401183289c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
using Ryujinx.Graphics.Device;
using Ryujinx.Graphics.Gpu.Engine.MME;
using Ryujinx.Graphics.Gpu.Synchronization;
using System;
using System.Collections.Generic;
using System.Threading;

namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
    /// <summary>
    /// Represents a GPU General Purpose FIFO class.
    /// </summary>
    class GPFifoClass : IDeviceState
    {
        private readonly GpuContext _context;
        private readonly GPFifoProcessor _parent;
        private readonly DeviceState<GPFifoClassState> _state;

        private bool _createSyncPending;

        private const int MacrosCount = 0x80;

        // Note: The size of the macro memory is unknown, we just make
        // a guess here and use 256kb as the size. Increase if needed.
        private const int MacroCodeSize = 256 * 256;

        private readonly Macro[] _macros;
        private readonly int[] _macroCode;

        /// <summary>
        /// Creates a new instance of the GPU General Purpose FIFO class.
        /// </summary>
        /// <param name="context">GPU context</param>
        /// <param name="parent">Parent GPU General Purpose FIFO processor</param>
        public GPFifoClass(GpuContext context, GPFifoProcessor parent)
        {
            _context = context;
            _parent = parent;
            _state = new DeviceState<GPFifoClassState>(new Dictionary<string, RwCallback>
            {
                { nameof(GPFifoClassState.Semaphored), new RwCallback(Semaphored, null) },
                { nameof(GPFifoClassState.Syncpointb), new RwCallback(Syncpointb, null) },
                { nameof(GPFifoClassState.WaitForIdle), new RwCallback(WaitForIdle, null) },
                { nameof(GPFifoClassState.SetReference), new RwCallback(SetReference, null) },
                { nameof(GPFifoClassState.LoadMmeInstructionRam), new RwCallback(LoadMmeInstructionRam, null) },
                { nameof(GPFifoClassState.LoadMmeStartAddressRam), new RwCallback(LoadMmeStartAddressRam, null) },
                { nameof(GPFifoClassState.SetMmeShadowRamControl), new RwCallback(SetMmeShadowRamControl, null) },
            });

            _macros = new Macro[MacrosCount];
            _macroCode = new int[MacroCodeSize];
        }

        /// <summary>
        /// Create any syncs from WaitForIdle command that are currently pending.
        /// </summary>
        public void CreatePendingSyncs()
        {
            if (_createSyncPending)
            {
                _createSyncPending = false;
                _context.CreateHostSyncIfNeeded(HostSyncFlags.None);
            }
        }

        /// <summary>
        /// Reads data from the class registers.
        /// </summary>
        /// <param name="offset">Register byte offset</param>
        /// <returns>Data at the specified offset</returns>
        public int Read(int offset) => _state.Read(offset);

        /// <summary>
        /// Writes data to the class registers.
        /// </summary>
        /// <param name="offset">Register byte offset</param>
        /// <param name="data">Data to be written</param>
        public void Write(int offset, int data) => _state.Write(offset, data);

        /// <summary>
        /// Writes a GPU counter to guest memory.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void Semaphored(int argument)
        {
            ulong address = ((ulong)_state.State.SemaphorebOffsetLower << 2) |
                            ((ulong)_state.State.SemaphoreaOffsetUpper << 32);

            int value = _state.State.SemaphorecPayload;

            SemaphoredOperation operation = _state.State.SemaphoredOperation;

            if (_state.State.SemaphoredReleaseSize == SemaphoredReleaseSize.SixteenBytes)
            {
                _parent.MemoryManager.Write(address + 4, 0);
                _parent.MemoryManager.Write(address + 8, _context.GetTimestamp());
            }

            // TODO: Acquire operations (Wait), interrupts for invalid combinations.
            if (operation == SemaphoredOperation.Release)
            {
                _parent.MemoryManager.Write(address, value);
            }
            else if (operation == SemaphoredOperation.Reduction)
            {
                bool signed = _state.State.SemaphoredFormat == SemaphoredFormat.Signed;

                int mem = _parent.MemoryManager.Read<int>(address);

                switch (_state.State.SemaphoredReduction)
                {
                    case SemaphoredReduction.Min:
                        value = signed ? Math.Min(mem, value) : (int)Math.Min((uint)mem, (uint)value);
                        break;
                    case SemaphoredReduction.Max:
                        value = signed ? Math.Max(mem, value) : (int)Math.Max((uint)mem, (uint)value);
                        break;
                    case SemaphoredReduction.Xor:
                        value ^= mem;
                        break;
                    case SemaphoredReduction.And:
                        value &= mem;
                        break;
                    case SemaphoredReduction.Or:
                        value |= mem;
                        break;
                    case SemaphoredReduction.Add:
                        value += mem;
                        break;
                    case SemaphoredReduction.Inc:
                        value = (uint)mem < (uint)value ? mem + 1 : 0;
                        break;
                    case SemaphoredReduction.Dec:
                        value = (uint)mem > 0 && (uint)mem <= (uint)value ? mem - 1 : value;
                        break;
                }

                _parent.MemoryManager.Write(address, value);
            }
        }

        /// <summary>
        /// Apply a fence operation on a syncpoint.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void Syncpointb(int argument)
        {
            SyncpointbOperation operation = _state.State.SyncpointbOperation;

            uint syncpointId = (uint)_state.State.SyncpointbSyncptIndex;

            if (operation == SyncpointbOperation.Wait)
            {
                uint threshold = (uint)_state.State.SyncpointaPayload;

                _context.Synchronization.WaitOnSyncpoint(syncpointId, threshold, Timeout.InfiniteTimeSpan);
            }
            else if (operation == SyncpointbOperation.Incr)
            {
                // "Unbind" render targets since a syncpoint increment might indicate future CPU access for the textures.
                _parent.TextureManager.RefreshModifiedTextures();

                _context.CreateHostSyncIfNeeded(HostSyncFlags.StrictSyncpoint);
                _context.Synchronization.IncrementSyncpoint(syncpointId);
            }

            _context.AdvanceSequence();
        }

        /// <summary>
        /// Waits for the GPU to be idle.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void WaitForIdle(int argument)
        {
            _parent.PerformDeferredDraws();
            _context.Renderer.Pipeline.Barrier();

            _createSyncPending = true;
        }

        /// <summary>
        /// Used as an indirect data barrier on NVN. When used, access to previously written data must be coherent.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void SetReference(int argument)
        {
            _context.Renderer.Pipeline.CommandBufferBarrier();

            _context.CreateHostSyncIfNeeded(HostSyncFlags.Strict);
        }

        /// <summary>
        /// Sends macro code/data to the MME.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void LoadMmeInstructionRam(int argument)
        {
            _macroCode[_state.State.LoadMmeInstructionRamPointer++] = argument;
        }

        /// <summary>
        /// Binds a macro index to a position for the MME
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void LoadMmeStartAddressRam(int argument)
        {
            _macros[_state.State.LoadMmeStartAddressRamPointer++] = new Macro(argument);
        }

        /// <summary>
        /// Changes the shadow RAM control.
        /// </summary>
        /// <param name="argument">Method call argument</param>
        public void SetMmeShadowRamControl(int argument)
        {
            _parent.SetShadowRamControl(argument);
        }

        /// <summary>
        /// Pushes an argument to a macro.
        /// </summary>
        /// <param name="index">Index of the macro</param>
        /// <param name="gpuVa">GPU virtual address where the command word is located</param>
        /// <param name="argument">Argument to be pushed to the macro</param>
        public void MmePushArgument(int index, ulong gpuVa, int argument)
        {
            _macros[index].PushArgument(gpuVa, argument);
        }

        /// <summary>
        /// Prepares a macro for execution.
        /// </summary>
        /// <param name="index">Index of the macro</param>
        /// <param name="argument">Initial argument passed to the macro</param>
        public void MmeStart(int index, int argument)
        {
            _macros[index].StartExecution(_context, _parent, _macroCode, argument);
        }

        /// <summary>
        /// Executes a macro.
        /// </summary>
        /// <param name="index">Index of the macro</param>
        /// <param name="state">Current GPU state</param>
        public void CallMme(int index, IDeviceState state)
        {
            _macros[index].Execute(_macroCode, state);
        }
    }
}