aboutsummaryrefslogtreecommitdiff
path: root/Ryujinx.HLE/HOS/Kernel/KScheduler.cs
blob: 3cfda4197ffe5b14cc2a5b428dc9f8a7418fee8f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
using System;
using System.Collections.Generic;
using System.Linq;

namespace Ryujinx.HLE.HOS.Kernel
{
    partial class KScheduler : IDisposable
    {
        public const int PrioritiesCount = 64;
        public const int CpuCoresCount   = 4;

        private const int PreemptionPriorityCores012 = 59;
        private const int PreemptionPriorityCore3    = 63;

        private Horizon System;

        public KSchedulingData SchedulingData { get; private set; }

        public KCoreContext[] CoreContexts { get; private set; }

        public bool ThreadReselectionRequested { get; set; }

        public KScheduler(Horizon System)
        {
            this.System = System;

            SchedulingData = new KSchedulingData();

            CoreManager = new HleCoreManager();

            CoreContexts = new KCoreContext[CpuCoresCount];

            for (int Core = 0; Core < CpuCoresCount; Core++)
            {
                CoreContexts[Core] = new KCoreContext(this, CoreManager);
            }
        }

        private void PreemptThreads()
        {
            System.CriticalSectionLock.Lock();

            PreemptThread(PreemptionPriorityCores012, 0);
            PreemptThread(PreemptionPriorityCores012, 1);
            PreemptThread(PreemptionPriorityCores012, 2);
            PreemptThread(PreemptionPriorityCore3,    3);

            System.CriticalSectionLock.Unlock();
        }

        private void PreemptThread(int Prio, int Core)
        {
            IEnumerable<KThread> ScheduledThreads = SchedulingData.ScheduledThreads(Core);

            KThread SelectedThread = ScheduledThreads.FirstOrDefault(x => x.DynamicPriority == Prio);

            //Yield priority queue.
            if (SelectedThread != null)
            {
                SchedulingData.Reschedule(Prio, Core, SelectedThread);
            }

            IEnumerable<KThread> SuitableCandidates()
            {
                foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
                {
                    int SrcCore = Thread.CurrentCore;

                    if (SrcCore >= 0)
                    {
                        KThread HighestPrioSrcCore = SchedulingData.ScheduledThreads(SrcCore).FirstOrDefault();

                        if (HighestPrioSrcCore != null && HighestPrioSrcCore.DynamicPriority < 2)
                        {
                            break;
                        }

                        if (HighestPrioSrcCore == Thread)
                        {
                            continue;
                        }
                    }

                    //If the candidate was scheduled after the current thread, then it's not worth it.
                    if (SelectedThread == null || SelectedThread.LastScheduledTicks >= Thread.LastScheduledTicks)
                    {
                        yield return Thread;
                    }
                }
            }

            //Select candidate threads that could run on this core.
            //Only take into account threads that are not yet selected.
            KThread Dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority == Prio);

            if (Dst != null)
            {
                SchedulingData.TransferToCore(Prio, Core, Dst);

                SelectedThread = Dst;
            }

            //If the priority of the currently selected thread is lower than preemption priority,
            //then allow threads with lower priorities to be selected aswell.
            if (SelectedThread != null && SelectedThread.DynamicPriority > Prio)
            {
                Func<KThread, bool> Predicate = x => x.DynamicPriority >= SelectedThread.DynamicPriority;

                Dst = SuitableCandidates().FirstOrDefault(Predicate);

                if (Dst != null)
                {
                    SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);
                }
            }

            ThreadReselectionRequested = true;
        }

        public void SelectThreads()
        {
            ThreadReselectionRequested = false;

            for (int Core = 0; Core < CpuCoresCount; Core++)
            {
                KThread Thread = SchedulingData.ScheduledThreads(Core).FirstOrDefault();

                CoreContexts[Core].SelectThread(Thread);
            }

            for (int Core = 0; Core < CpuCoresCount; Core++)
            {
                //If the core is not idle (there's already a thread running on it),
                //then we don't need to attempt load balancing.
                if (SchedulingData.ScheduledThreads(Core).Any())
                {
                    continue;
                }

                int[] SrcCoresHighestPrioThreads = new int[CpuCoresCount];

                int SrcCoresHighestPrioThreadsCount = 0;

                KThread Dst = null;

                //Select candidate threads that could run on this core.
                //Give preference to threads that are not yet selected.
                foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
                {
                    if (Thread.CurrentCore < 0 || Thread != CoreContexts[Thread.CurrentCore].SelectedThread)
                    {
                        Dst = Thread;

                        break;
                    }

                    SrcCoresHighestPrioThreads[SrcCoresHighestPrioThreadsCount++] = Thread.CurrentCore;
                }

                //Not yet selected candidate found.
                if (Dst != null)
                {
                    //Priorities < 2 are used for the kernel message dispatching
                    //threads, we should skip load balancing entirely.
                    if (Dst.DynamicPriority >= 2)
                    {
                        SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);

                        CoreContexts[Core].SelectThread(Dst);
                    }

                    continue;
                }

                //All candiates are already selected, choose the best one
                //(the first one that doesn't make the source core idle if moved).
                for (int Index = 0; Index < SrcCoresHighestPrioThreadsCount; Index++)
                {
                    int SrcCore = SrcCoresHighestPrioThreads[Index];

                    KThread Src = SchedulingData.ScheduledThreads(SrcCore).ElementAtOrDefault(1);

                    if (Src != null)
                    {
                        //Run the second thread on the queue on the source core,
                        //move the first one to the current core.
                        KThread OrigSelectedCoreSrc = CoreContexts[SrcCore].SelectedThread;

                        CoreContexts[SrcCore].SelectThread(Src);

                        SchedulingData.TransferToCore(OrigSelectedCoreSrc.DynamicPriority, Core, OrigSelectedCoreSrc);

                        CoreContexts[Core].SelectThread(OrigSelectedCoreSrc);
                    }
                }
            }
        }

        public KThread GetCurrentThread()
        {
            lock (CoreContexts)
            {
                for (int Core = 0; Core < CpuCoresCount; Core++)
                {
                    if (CoreContexts[Core].CurrentThread?.Context.IsCurrentThread() ?? false)
                    {
                        return CoreContexts[Core].CurrentThread;
                    }
                }
            }

            throw new InvalidOperationException("Current thread is not scheduled!");
        }

        public void Dispose()
        {
            Dispose(true);
        }

        protected virtual void Dispose(bool Disposing)
        {
            if (Disposing)
            {
                KeepPreempting = false;
            }
        }
    }
}