aboutsummaryrefslogtreecommitdiff
path: root/Ryujinx.Common/Collections/IntervalTree.cs
blob: 514fd5341178df02c65bbb8fb3488f2e2392fa67 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
using System;
using System.Collections.Generic;
using System.Linq;

namespace Ryujinx.Common.Collections
{
    /// <summary>
    /// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges.
    /// </summary>
    /// <typeparam name="K">Key</typeparam>
    /// <typeparam name="V">Value</typeparam>
    public class IntervalTree<K, V> where K : IComparable<K>
    {
        private const int ArrayGrowthSize = 32;

        private const bool Black = true;
        private const bool Red = false;
        private IntervalTreeNode<K, V> _root = null;
        private int _count = 0;

        public int Count => _count;

        public IntervalTree() { }

        #region Public Methods

        /// <summary>
        /// Gets the values of the interval whose key is <paramref name="key"/>.
        /// </summary>
        /// <param name="key">Key of the node value to get</param>
        /// <param name="overlaps">Overlaps array to place results in</param>
        /// <returns>Number of values found</returns>
        /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
        public int Get(K key, ref V[] overlaps)
        {
            if (key == null)
            {
                throw new ArgumentNullException(nameof(key));
            }

            IntervalTreeNode<K, V> node = GetNode(key);

            if (node == null)
            {
                return 0;
            }

            if (node.Values.Count > overlaps.Length)
            {
                Array.Resize(ref overlaps, node.Values.Count);
            }

            int overlapsCount = 0;
            foreach (RangeNode<K, V> value in node.Values)
            {
                overlaps[overlapsCount++] = value.Value;
            }

            return overlapsCount;
        }

        /// <summary>
        /// Returns the values of the intervals whose start and end keys overlap the given range.
        /// </summary>
        /// <param name="start">Start of the range</param>
        /// <param name="end">End of the range</param>
        /// <param name="overlaps">Overlaps array to place results in</param>
        /// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param>
        /// <returns>Number of values found</returns>
        /// <exception cref="ArgumentNullException"><paramref name="start"/> or <paramref name="end"/> is null</exception>
        public int Get(K start, K end, ref V[] overlaps, int overlapCount = 0)
        {
            if (start == null)
            {
                throw new ArgumentNullException(nameof(start));
            }

            if (end == null)
            {
                throw new ArgumentNullException(nameof(end));
            }

            GetValues(_root, start, end, ref overlaps, ref overlapCount);

            return overlapCount;
        }

        /// <summary>
        /// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>.
        /// </summary>
        /// <param name="start">Start of the range to add</param>
        /// <param name="end">End of the range to insert</param>
        /// <param name="value">Value to add</param>
        /// <exception cref="ArgumentNullException"><paramref name="start"/>, <paramref name="end"/> or <paramref name="value"/> are null</exception>
        public void Add(K start, K end, V value)
        {
            if (start == null)
            {
                throw new ArgumentNullException(nameof(start));
            }

            if (end == null)
            {
                throw new ArgumentNullException(nameof(end));
            }

            if (value == null)
            {
                throw new ArgumentNullException(nameof(value));
            }

            Insert(start, end, value);
        }

        /// <summary>
        /// Removes the given <paramref name="value"/> from the tree, searching for it with <paramref name="key"/>.
        /// </summary>
        /// <param name="key">Key of the node to remove</param>
        /// <param name="value">Value to remove</param>
        /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
        /// <returns>Number of deleted values</returns>
        public int Remove(K key, V value)
        {
            if (key == null)
            {
                throw new ArgumentNullException(nameof(key));
            }

            int removed = Delete(key, value);

            _count -= removed;

            return removed;
        }

        /// <summary>
        /// Adds all the nodes in the dictionary into <paramref name="list"/>.
        /// </summary>
        /// <returns>A list of all RangeNodes sorted by Key Order</returns>
        public List<RangeNode<K, V>> AsList()
        {
            List<RangeNode<K, V>> list = new List<RangeNode<K, V>>();

            AddToList(_root, list);

            return list;
        }

        #endregion

        #region Private Methods (BST)

        /// <summary>
        /// Adds all RangeNodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
        /// </summary>
        /// <param name="node">The node to search for RangeNodes within</param>
        /// <param name="list">The list to add RangeNodes to</param>
        private void AddToList(IntervalTreeNode<K, V> node, List<RangeNode<K, V>> list)
        {
            if (node == null)
            {
                return;
            }

            AddToList(node.Left, list);

            list.AddRange(node.Values);

            AddToList(node.Right, list);
        }

        /// <summary>
        /// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
        /// </summary>
        /// <param name="key">Key of the node to get</param>
        /// <returns>Node reference in the tree</returns>
        /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
        private IntervalTreeNode<K, V> GetNode(K key)
        {
            if (key == null)
            {
                throw new ArgumentNullException(nameof(key));
            }

            IntervalTreeNode<K, V> node = _root;
            while (node != null)
            {
                int cmp = key.CompareTo(node.Start);
                if (cmp < 0)
                {
                    node = node.Left;
                }
                else if (cmp > 0)
                {
                    node = node.Right;
                }
                else
                {
                    return node;
                }
            }
            return null;
        }

        /// <summary>
        /// Retrieve all values that overlap the given start and end keys.
        /// </summary>
        /// <param name="start">Start of the range</param>
        /// <param name="end">End of the range</param>
        /// <param name="overlaps">Overlaps array to place results in</param>
        /// <param name="overlapCount">Overlaps count to update</param>
        private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref V[] overlaps, ref int overlapCount)
        {
            if (node == null || start.CompareTo(node.Max) >= 0)
            {
                return;
            }

            GetValues(node.Left, start, end, ref overlaps, ref overlapCount);

            bool endsOnRight = end.CompareTo(node.Start) > 0;
            if (endsOnRight)
            {
                if (start.CompareTo(node.End) < 0)
                {
                    // Contains this node. Add overlaps to list.
                    foreach (RangeNode<K,V> overlap in node.Values)
                    {
                        if (start.CompareTo(overlap.End) < 0)
                        {
                            if (overlaps.Length >= overlapCount)
                            {
                                Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize);
                            }

                            overlaps[overlapCount++] = overlap.Value;
                        }
                    }
                }

                GetValues(node.Right, start, end, ref overlaps, ref overlapCount);
            }
        }

        /// <summary>
        /// Inserts a new node into the tree with a given <paramref name="start"/>, <paramref name="end"/> and <paramref name="value"/>.
        /// </summary>
        /// <param name="start">Start of the range to insert</param>
        /// <param name="end">End of the range to insert</param>
        /// <param name="value">Value to insert</param>
        private void Insert(K start, K end, V value)
        {
            IntervalTreeNode<K, V> newNode = BSTInsert(start, end, value);
            RestoreBalanceAfterInsertion(newNode);
        }

        /// <summary>
        /// Propagate an increase in max value starting at the given node, heading up the tree.
        /// This should only be called if the max increases - not for rebalancing or removals.
        /// </summary>
        /// <param name="node">The node to start propagating from</param>
        private void PropagateIncrease(IntervalTreeNode<K, V> node)
        {
            K max = node.Max;
            IntervalTreeNode<K, V> ptr = node;

            while ((ptr = ptr.Parent) != null)
            {
                if (max.CompareTo(ptr.Max) > 0)
                {
                    ptr.Max = max;
                }
                else
                {
                    break;
                }
            }
        }

        /// <summary>
        /// Propagate recalculating max value starting at the given node, heading up the tree.
        /// This fully recalculates the max value from all children when there is potential for it to decrease.
        /// </summary>
        /// <param name="node">The node to start propagating from</param>
        private void PropagateFull(IntervalTreeNode<K, V> node)
        {
            IntervalTreeNode<K, V> ptr = node;

            do
            {
                K max = ptr.End;

                if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0)
                {
                    max = ptr.Left.Max;
                }

                if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0)
                {
                    max = ptr.Right.Max;
                }

                ptr.Max = max;
            } while ((ptr = ptr.Parent) != null);
        }

        /// <summary>
        /// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key.
        /// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>.
        /// Each node can contain multiple values, and has an end address which is the maximum of all those values.
        /// Post insertion, the "max" value of the node and all parents are updated.
        /// </summary>
        /// <param name="start">Start of the range to insert</param>
        /// <param name="end">End of the range to insert</param>
        /// <param name="value">Value to insert</param>
        /// <returns>The inserted Node</returns>
        private IntervalTreeNode<K, V> BSTInsert(K start, K end, V value)
        {
            IntervalTreeNode<K, V> parent = null;
            IntervalTreeNode<K, V> node = _root;

            while (node != null)
            {
                parent = node;
                int cmp = start.CompareTo(node.Start);
                if (cmp < 0)
                {
                    node = node.Left;
                }
                else if (cmp > 0)
                {
                    node = node.Right;
                }
                else
                {
                    node.Values.Add(new RangeNode<K, V>(start, end, value));

                    if (end.CompareTo(node.End) > 0)
                    {
                        node.End = end;
                        if (end.CompareTo(node.Max) > 0)
                        {
                            node.Max = end;
                            PropagateIncrease(node);
                        }
                    }

                    _count++;
                    return node;
                }
            }
            IntervalTreeNode<K, V> newNode = new IntervalTreeNode<K, V>(start, end, value, parent);
            if (newNode.Parent == null)
            {
                _root = newNode;
            }
            else if (start.CompareTo(parent.Start) < 0)
            {
                parent.Left = newNode;
            }
            else
            {
                parent.Right = newNode;
            }

            PropagateIncrease(newNode);
            _count++;
            return newNode;
        }

        /// <summary>
        /// Removes instances of <paramref name="value"> from the dictionary after searching for it with <paramref name="key">.
        /// </summary>
        /// <param name="key">Key to search for</param>
        /// <param name="value">Value to delete</param>
        /// <returns>Number of deleted values</returns>
        private int Delete(K key, V value)
        {
            IntervalTreeNode<K, V> nodeToDelete = GetNode(key);

            if (nodeToDelete == null)
            {
                return 0;
            }

            int removed = nodeToDelete.Values.RemoveAll(node => node.Value.Equals(value));

            if (nodeToDelete.Values.Count > 0)
            {
                if (removed > 0)
                {
                    nodeToDelete.End = nodeToDelete.Values.Max(node => node.End);

                    // Recalculate max from children and new end.
                    PropagateFull(nodeToDelete);
                }

                return removed;
            }

            IntervalTreeNode<K, V> replacementNode;

            if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
            {
                replacementNode = nodeToDelete;
            }
            else
            {
                replacementNode = PredecessorOf(nodeToDelete);
            }

            IntervalTreeNode<K, V> tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);

            if (tmp != null)
            {
                tmp.Parent = ParentOf(replacementNode);
            }

            if (ParentOf(replacementNode) == null)
            {
                _root = tmp;
            }
            else if (replacementNode == LeftOf(ParentOf(replacementNode)))
            {
                ParentOf(replacementNode).Left = tmp;
            }
            else
            {
                ParentOf(replacementNode).Right = tmp;
            }

            if (replacementNode != nodeToDelete)
            {
                nodeToDelete.Start = replacementNode.Start;
                nodeToDelete.Values = replacementNode.Values;
                nodeToDelete.End = replacementNode.End;
                nodeToDelete.Max = replacementNode.Max;
            }

            PropagateFull(replacementNode);

            if (tmp != null && ColorOf(replacementNode) == Black)
            {
                RestoreBalanceAfterRemoval(tmp);
            }

            return removed;
        }

        /// <summary>
        /// Returns the node with the largest key where <paramref name="node"/> is considered the root node.
        /// </summary>
        /// <param name="node">Root Node</param>
        /// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
        private static IntervalTreeNode<K, V> Maximum(IntervalTreeNode<K, V> node)
        {
            IntervalTreeNode<K, V> tmp = node;
            while (tmp.Right != null)
            {
                tmp = tmp.Right;
            }

            return tmp;
        }

        /// <summary>
        /// Finds the node whose key is immediately less than <paramref name="node"/>.
        /// </summary>
        /// <param name="node">Node to find the predecessor of</param>
        /// <returns>Predecessor of <paramref name="node"/></returns>
        private static IntervalTreeNode<K, V> PredecessorOf(IntervalTreeNode<K, V> node)
        {
            if (node.Left != null)
            {
                return Maximum(node.Left);
            }
            IntervalTreeNode<K, V> parent = node.Parent;
            while (parent != null && node == parent.Left)
            {
                node = parent;
                parent = parent.Parent;
            }
            return parent;
        }
        #endregion

        #region Private Methods (RBL)
        private void RestoreBalanceAfterRemoval(IntervalTreeNode<K, V> balanceNode)
        {
            IntervalTreeNode<K, V> ptr = balanceNode;

            while (ptr != _root && ColorOf(ptr) == Black)
            {
                if (ptr == LeftOf(ParentOf(ptr)))
                {
                    IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ptr));

                    if (ColorOf(sibling) == Red)
                    {
                        SetColor(sibling, Black);
                        SetColor(ParentOf(ptr), Red);
                        RotateLeft(ParentOf(ptr));
                        sibling = RightOf(ParentOf(ptr));
                    }
                    if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black)
                    {
                        SetColor(sibling, Red);
                        ptr = ParentOf(ptr);
                    }
                    else
                    {
                        if (ColorOf(RightOf(sibling)) == Black)
                        {
                            SetColor(LeftOf(sibling), Black);
                            SetColor(sibling, Red);
                            RotateRight(sibling);
                            sibling = RightOf(ParentOf(ptr));
                        }
                        SetColor(sibling, ColorOf(ParentOf(ptr)));
                        SetColor(ParentOf(ptr), Black);
                        SetColor(RightOf(sibling), Black);
                        RotateLeft(ParentOf(ptr));
                        ptr = _root;
                    }
                }
                else
                {
                    IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ptr));

                    if (ColorOf(sibling) == Red)
                    {
                        SetColor(sibling, Black);
                        SetColor(ParentOf(ptr), Red);
                        RotateRight(ParentOf(ptr));
                        sibling = LeftOf(ParentOf(ptr));
                    }
                    if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black)
                    {
                        SetColor(sibling, Red);
                        ptr = ParentOf(ptr);
                    }
                    else
                    {
                        if (ColorOf(LeftOf(sibling)) == Black)
                        {
                            SetColor(RightOf(sibling), Black);
                            SetColor(sibling, Red);
                            RotateLeft(sibling);
                            sibling = LeftOf(ParentOf(ptr));
                        }
                        SetColor(sibling, ColorOf(ParentOf(ptr)));
                        SetColor(ParentOf(ptr), Black);
                        SetColor(LeftOf(sibling), Black);
                        RotateRight(ParentOf(ptr));
                        ptr = _root;
                    }
                }
            }
            SetColor(ptr, Black);
        }

        private void RestoreBalanceAfterInsertion(IntervalTreeNode<K, V> balanceNode)
        {
            SetColor(balanceNode, Red);
            while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red)
            {
                if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode))))
                {
                    IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ParentOf(balanceNode)));

                    if (ColorOf(sibling) == Red)
                    {
                        SetColor(ParentOf(balanceNode), Black);
                        SetColor(sibling, Black);
                        SetColor(ParentOf(ParentOf(balanceNode)), Red);
                        balanceNode = ParentOf(ParentOf(balanceNode));
                    }
                    else
                    {
                        if (balanceNode == RightOf(ParentOf(balanceNode)))
                        {
                            balanceNode = ParentOf(balanceNode);
                            RotateLeft(balanceNode);
                        }
                        SetColor(ParentOf(balanceNode), Black);
                        SetColor(ParentOf(ParentOf(balanceNode)), Red);
                        RotateRight(ParentOf(ParentOf(balanceNode)));
                    }
                }
                else
                {
                    IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ParentOf(balanceNode)));

                    if (ColorOf(sibling) == Red)
                    {
                        SetColor(ParentOf(balanceNode), Black);
                        SetColor(sibling, Black);
                        SetColor(ParentOf(ParentOf(balanceNode)), Red);
                        balanceNode = ParentOf(ParentOf(balanceNode));
                    }
                    else
                    {
                        if (balanceNode == LeftOf(ParentOf(balanceNode)))
                        {
                            balanceNode = ParentOf(balanceNode);
                            RotateRight(balanceNode);
                        }
                        SetColor(ParentOf(balanceNode), Black);
                        SetColor(ParentOf(ParentOf(balanceNode)), Red);
                        RotateLeft(ParentOf(ParentOf(balanceNode)));
                    }
                }
            }
            SetColor(_root, Black);
        }

        private void RotateLeft(IntervalTreeNode<K, V> node)
        {
            if (node != null)
            {
                IntervalTreeNode<K, V> right = RightOf(node);
                node.Right = LeftOf(right);
                if (node.Right != null)
                {
                    node.Right.Parent = node;
                }
                IntervalTreeNode<K, V> nodeParent = ParentOf(node);
                right.Parent = nodeParent;
                if (nodeParent == null)
                {
                    _root = right;
                }
                else if (node == LeftOf(nodeParent))
                {
                    nodeParent.Left = right;
                }
                else
                {
                    nodeParent.Right = right;
                }
                right.Left = node;
                node.Parent = right;

                PropagateFull(node);
            }
        }

        private void RotateRight(IntervalTreeNode<K, V> node)
        {
            if (node != null)
            {
                IntervalTreeNode<K, V> left = LeftOf(node);
                node.Left = RightOf(left);
                if (node.Left != null)
                {
                    node.Left.Parent = node;
                }
                IntervalTreeNode<K, V> nodeParent = ParentOf(node);
                left.Parent = nodeParent;
                if (nodeParent == null)
                {
                    _root = left;
                }
                else if (node == RightOf(nodeParent))
                {
                    nodeParent.Right = left;
                }
                else
                {
                    nodeParent.Left = left;
                }
                left.Right = node;
                node.Parent = left;

                PropagateFull(node);
            }
        }
        #endregion

        #region Safety-Methods

        // These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.

        /// <summary>
        /// Returns the color of <paramref name="node"/>, or Black if it is null.
        /// </summary>
        /// <param name="node">Node</param>
        /// <returns>The boolean color of <paramref name="node"/>, or black if null</returns>
        private static bool ColorOf(IntervalTreeNode<K, V> node)
        {
            return node == null || node.Color;
        }

        /// <summary>
        /// Sets the color of <paramref name="node"/> node to <paramref name="color"/>.
        /// <br></br>
        /// This method does nothing if <paramref name="node"/> is null.
        /// </summary>
        /// <param name="node">Node to set the color of</param>
        /// <param name="color">Color (Boolean)</param>
        private static void SetColor(IntervalTreeNode<K, V> node, bool color)
        {
            if (node != null)
            {
                node.Color = color;
            }
        }

        /// <summary>
        /// This method returns the left node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
        /// </summary>
        /// <param name="node">Node to retrieve the left child from</param>
        /// <returns>Left child of <paramref name="node"/></returns>
        private static IntervalTreeNode<K, V> LeftOf(IntervalTreeNode<K, V> node)
        {
            return node?.Left;
        }

        /// <summary>
        /// This method returns the right node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
        /// </summary>
        /// <param name="node">Node to retrieve the right child from</param>
        /// <returns>Right child of <paramref name="node"/></returns>
        private static IntervalTreeNode<K, V> RightOf(IntervalTreeNode<K, V> node)
        {
            return node?.Right;
        }

        /// <summary>
        /// Returns the parent node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
        /// </summary>
        /// <param name="node">Node to retrieve the parent from</param>
        /// <returns>Parent of <paramref name="node"/></returns>
        private static IntervalTreeNode<K, V> ParentOf(IntervalTreeNode<K, V> node)
        {
            return node?.Parent;
        }
        #endregion

        public bool ContainsKey(K key)
        {
            if (key == null)
            {
                throw new ArgumentNullException(nameof(key));
            }
            return GetNode(key) != null;
        }

        public void Clear()
        {
            _root = null;
            _count = 0;
        }
    }

    /// <summary>
    /// Represents a value and its start and end keys.
    /// </summary>
    /// <typeparam name="K"></typeparam>
    /// <typeparam name="V"></typeparam>
    public readonly struct RangeNode<K, V>
    {
        public readonly K Start;
        public readonly K End;
        public readonly V Value;

        public RangeNode(K start, K end, V value)
        {
            Start = start;
            End = end;
            Value = value;
        }
    }

    /// <summary>
    /// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V.
    /// </summary>
    /// <typeparam name="K">Key type of the node</typeparam>
    /// <typeparam name="V">Value type of the node</typeparam>
    class IntervalTreeNode<K, V>
    {
        public bool Color = true;
        public IntervalTreeNode<K, V> Left = null;
        public IntervalTreeNode<K, V> Right = null;
        public IntervalTreeNode<K, V> Parent = null;

        /// <summary>
        /// The start of the range.
        /// </summary>
        public K Start;

        /// <summary>
        /// The end of the range - maximum of all in the Values list.
        /// </summary>
        public K End;

        /// <summary>
        /// The maximum end value of this node and all its children.
        /// </summary>
        public K Max;

        public List<RangeNode<K, V>> Values;

        public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
        {
            Start = start;
            End = end;
            Max = end;
            Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) };
            Parent = parent;
        }
    }
}