using Ryujinx.Common; using Ryujinx.Graphics.Gpu.Memory; using Ryujinx.Graphics.Texture; using Ryujinx.Graphics.Video; using System; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86; using static Ryujinx.Graphics.Nvdec.Image.SurfaceCommon; namespace Ryujinx.Graphics.Nvdec.Image { static class SurfaceReader { public static void Read(MemoryManager gmm, ISurface surface, uint lumaOffset, uint chromaOffset) { int width = surface.Width; int height = surface.Height; int stride = surface.Stride; ReadOnlySpan<byte> luma = gmm.DeviceGetSpan(lumaOffset, GetBlockLinearSize(width, height, 1)); ReadLuma(surface.YPlane.AsSpan(), luma, stride, width, height); int uvWidth = surface.UvWidth; int uvHeight = surface.UvHeight; int uvStride = surface.UvStride; ReadOnlySpan<byte> chroma = gmm.DeviceGetSpan(chromaOffset, GetBlockLinearSize(uvWidth, uvHeight, 2)); ReadChroma(surface.UPlane.AsSpan(), surface.VPlane.AsSpan(), chroma, uvStride, uvWidth, uvHeight); } private static void ReadLuma(Span<byte> dst, ReadOnlySpan<byte> src, int dstStride, int width, int height) { LayoutConverter.ConvertBlockLinearToLinear(dst, width, height, dstStride, 1, 2, src); } private unsafe static void ReadChroma( Span<byte> dstU, Span<byte> dstV, ReadOnlySpan<byte> src, int dstStride, int width, int height) { OffsetCalculator calc = new(width, height, 0, false, 2, 2); if (Sse2.IsSupported) { int strideTrunc64 = BitUtils.AlignDown(width * 2, 64); int outStrideGap = dstStride - width; fixed (byte* dstUPtr = dstU, dstVPtr = dstV, dataPtr = src) { byte* uPtr = dstUPtr; byte* vPtr = dstVPtr; for (int y = 0; y < height; y++) { calc.SetY(y); for (int x = 0; x < strideTrunc64; x += 64, uPtr += 32, vPtr += 32) { byte* offset = dataPtr + calc.GetOffsetWithLineOffset64(x); byte* offset2 = offset + 0x20; byte* offset3 = offset + 0x100; byte* offset4 = offset + 0x120; Vector128<byte> value = *(Vector128<byte>*)offset; Vector128<byte> value2 = *(Vector128<byte>*)offset2; Vector128<byte> value3 = *(Vector128<byte>*)offset3; Vector128<byte> value4 = *(Vector128<byte>*)offset4; Vector128<byte> u00 = Sse2.UnpackLow(value, value2); Vector128<byte> v00 = Sse2.UnpackHigh(value, value2); Vector128<byte> u01 = Sse2.UnpackLow(value3, value4); Vector128<byte> v01 = Sse2.UnpackHigh(value3, value4); Vector128<byte> u10 = Sse2.UnpackLow(u00, v00); Vector128<byte> v10 = Sse2.UnpackHigh(u00, v00); Vector128<byte> u11 = Sse2.UnpackLow(u01, v01); Vector128<byte> v11 = Sse2.UnpackHigh(u01, v01); Vector128<byte> u20 = Sse2.UnpackLow(u10, v10); Vector128<byte> v20 = Sse2.UnpackHigh(u10, v10); Vector128<byte> u21 = Sse2.UnpackLow(u11, v11); Vector128<byte> v21 = Sse2.UnpackHigh(u11, v11); Vector128<byte> u30 = Sse2.UnpackLow(u20, v20); Vector128<byte> v30 = Sse2.UnpackHigh(u20, v20); Vector128<byte> u31 = Sse2.UnpackLow(u21, v21); Vector128<byte> v31 = Sse2.UnpackHigh(u21, v21); *(Vector128<byte>*)uPtr = u30; *(Vector128<byte>*)(uPtr + 16) = u31; *(Vector128<byte>*)vPtr = v30; *(Vector128<byte>*)(vPtr + 16) = v31; } for (int x = strideTrunc64 / 2; x < width; x++, uPtr++, vPtr++) { byte* offset = dataPtr + calc.GetOffset(x); *uPtr = *offset; *vPtr = *(offset + 1); } uPtr += outStrideGap; vPtr += outStrideGap; } } } else { for (int y = 0; y < height; y++) { int dstBaseOffset = y * dstStride; calc.SetY(y); for (int x = 0; x < width; x++) { int srcOffset = calc.GetOffset(x); dstU[dstBaseOffset + x] = src[srcOffset]; dstV[dstBaseOffset + x] = src[srcOffset + 1]; } } } } } }