using Ryujinx.Common.Logging; using Ryujinx.Graphics.GAL; using Ryujinx.Graphics.Gpu.Image; using Ryujinx.Graphics.Shader; using Ryujinx.Graphics.Shader.Translation; namespace Ryujinx.Graphics.Gpu.Shader { /// /// GPU accessor. /// class GpuAccessorBase { private readonly GpuContext _context; private readonly ResourceCounts _resourceCounts; private readonly int _stageIndex; private int _reservedConstantBuffers; private int _reservedStorageBuffers; private int _reservedTextures; private int _reservedImages; private int _staticTexturesCount; private int _staticImagesCount; /// /// Creates a new GPU accessor. /// /// GPU context /// Counter of GPU resources used by the shader /// Index of the shader stage, 0 for compute public GpuAccessorBase(GpuContext context, ResourceCounts resourceCounts, int stageIndex) { _context = context; _resourceCounts = resourceCounts; _stageIndex = stageIndex; } /// /// Initializes counts for bindings that will be reserved for emulator use. /// /// Indicates if the current graphics shader is used with transform feedback enabled /// Indicates that the vertex shader will be emulated on a compute shader public void InitializeReservedCounts(bool tfEnabled, bool vertexAsCompute) { ResourceReservationCounts rrc = new(!_context.Capabilities.SupportsTransformFeedback && tfEnabled, vertexAsCompute); _reservedConstantBuffers = rrc.ReservedConstantBuffers; _reservedStorageBuffers = rrc.ReservedStorageBuffers; _reservedTextures = rrc.ReservedTextures; _reservedImages = rrc.ReservedImages; } public int CreateConstantBufferBinding(int index) { int binding; if (_context.Capabilities.Api == TargetApi.Vulkan) { binding = GetBindingFromIndex(index, _context.Capabilities.MaximumUniformBuffersPerStage, "Uniform buffer"); } else { binding = _resourceCounts.UniformBuffersCount++; } return binding + _reservedConstantBuffers; } public int CreateImageBinding(int count, bool isBuffer) { int binding; if (_context.Capabilities.Api == TargetApi.Vulkan) { if (count == 1) { int index = _staticImagesCount++; if (isBuffer) { index += (int)_context.Capabilities.MaximumImagesPerStage; } binding = GetBindingFromIndex(index, _context.Capabilities.MaximumImagesPerStage * 2, "Image"); } else { binding = (int)GetDynamicBaseIndexDual(_context.Capabilities.MaximumImagesPerStage) + _resourceCounts.ImagesCount++; } } else { binding = _resourceCounts.ImagesCount; _resourceCounts.ImagesCount += count; } return binding + _reservedImages; } public int CreateStorageBufferBinding(int index) { int binding; if (_context.Capabilities.Api == TargetApi.Vulkan) { binding = GetBindingFromIndex(index, _context.Capabilities.MaximumStorageBuffersPerStage, "Storage buffer"); } else { binding = _resourceCounts.StorageBuffersCount++; } return binding + _reservedStorageBuffers; } public int CreateTextureBinding(int count, bool isBuffer) { int binding; if (_context.Capabilities.Api == TargetApi.Vulkan) { if (count == 1) { int index = _staticTexturesCount++; if (isBuffer) { index += (int)_context.Capabilities.MaximumTexturesPerStage; } binding = GetBindingFromIndex(index, _context.Capabilities.MaximumTexturesPerStage * 2, "Texture"); } else { binding = (int)GetDynamicBaseIndexDual(_context.Capabilities.MaximumTexturesPerStage) + _resourceCounts.TexturesCount++; } } else { binding = _resourceCounts.TexturesCount; _resourceCounts.TexturesCount += count; } return binding + _reservedTextures; } private int GetBindingFromIndex(int index, uint maxPerStage, string resourceName) { if ((uint)index >= maxPerStage) { Logger.Error?.Print(LogClass.Gpu, $"{resourceName} index {index} exceeds per stage limit of {maxPerStage}."); } return GetStageIndex(_stageIndex) * (int)maxPerStage + index; } public static int GetStageIndex(int stageIndex) { // This is just a simple remapping to ensure that most frequently used shader stages // have the lowest binding numbers. // This is useful because if we need to run on a system with a low limit on the bindings, // then we can still get most games working as the most common shaders will have low binding numbers. return stageIndex switch { 4 => 1, // Fragment 3 => 2, // Geometry 1 => 3, // Tessellation control 2 => 4, // Tessellation evaluation _ => 0, // Vertex/Compute }; } private static uint GetDynamicBaseIndexDual(uint maxPerStage) { return GetDynamicBaseIndex(maxPerStage) * 2; } private static uint GetDynamicBaseIndex(uint maxPerStage) { return maxPerStage * Constants.ShaderStages; } public int QueryHostGatherBiasPrecision() => _context.Capabilities.GatherBiasPrecision; public bool QueryHostReducedPrecision() => _context.Capabilities.ReduceShaderPrecision; public bool QueryHostHasFrontFacingBug() => _context.Capabilities.HasFrontFacingBug; public bool QueryHostHasVectorIndexingBug() => _context.Capabilities.HasVectorIndexingBug; public int QueryHostStorageBufferOffsetAlignment() => _context.Capabilities.StorageBufferOffsetAlignment; public int QueryHostSubgroupSize() => _context.Capabilities.ShaderSubgroupSize; public bool QueryHostSupportsBgraFormat() => _context.Capabilities.SupportsBgraFormat; public bool QueryHostSupportsFragmentShaderInterlock() => _context.Capabilities.SupportsFragmentShaderInterlock; public bool QueryHostSupportsFragmentShaderOrderingIntel() => _context.Capabilities.SupportsFragmentShaderOrderingIntel; public bool QueryHostSupportsGeometryShader() => _context.Capabilities.SupportsGeometryShader; public bool QueryHostSupportsGeometryShaderPassthrough() => _context.Capabilities.SupportsGeometryShaderPassthrough; public bool QueryHostSupportsImageLoadFormatted() => _context.Capabilities.SupportsImageLoadFormatted; public bool QueryHostSupportsLayerVertexTessellation() => _context.Capabilities.SupportsLayerVertexTessellation; public bool QueryHostSupportsNonConstantTextureOffset() => _context.Capabilities.SupportsNonConstantTextureOffset; public bool QueryHostSupportsScaledVertexFormats() => _context.Capabilities.SupportsScaledVertexFormats; public bool QueryHostSupportsSeparateSampler() => _context.Capabilities.SupportsSeparateSampler; public bool QueryHostSupportsShaderBallot() => _context.Capabilities.SupportsShaderBallot; public bool QueryHostSupportsShaderBarrierDivergence() => _context.Capabilities.SupportsShaderBarrierDivergence; public bool QueryHostSupportsShaderFloat64() => _context.Capabilities.SupportsShaderFloat64; public bool QueryHostSupportsSnormBufferTextureFormat() => _context.Capabilities.SupportsSnormBufferTextureFormat; public bool QueryHostSupportsTextureGatherOffsets() => _context.Capabilities.SupportsTextureGatherOffsets; public bool QueryHostSupportsTextureShadowLod() => _context.Capabilities.SupportsTextureShadowLod; public bool QueryHostSupportsTransformFeedback() => _context.Capabilities.SupportsTransformFeedback; public bool QueryHostSupportsViewportIndexVertexTessellation() => _context.Capabilities.SupportsViewportIndexVertexTessellation; public bool QueryHostSupportsViewportMask() => _context.Capabilities.SupportsViewportMask; public bool QueryHostSupportsDepthClipControl() => _context.Capabilities.SupportsDepthClipControl; /// /// Converts a packed Maxwell texture format to the shader translator texture format. /// /// Packed maxwell format /// Indicates if the format is sRGB /// Shader translator texture format protected static TextureFormat ConvertToTextureFormat(uint format, bool formatSrgb) { if (!FormatTable.TryGetTextureFormat(format, formatSrgb, out FormatInfo formatInfo)) { return TextureFormat.Unknown; } return formatInfo.Format switch { #pragma warning disable IDE0055 // Disable formatting Format.R8Unorm => TextureFormat.R8Unorm, Format.R8Snorm => TextureFormat.R8Snorm, Format.R8Uint => TextureFormat.R8Uint, Format.R8Sint => TextureFormat.R8Sint, Format.R16Float => TextureFormat.R16Float, Format.R16Unorm => TextureFormat.R16Unorm, Format.R16Snorm => TextureFormat.R16Snorm, Format.R16Uint => TextureFormat.R16Uint, Format.R16Sint => TextureFormat.R16Sint, Format.R32Float => TextureFormat.R32Float, Format.R32Uint => TextureFormat.R32Uint, Format.R32Sint => TextureFormat.R32Sint, Format.R8G8Unorm => TextureFormat.R8G8Unorm, Format.R8G8Snorm => TextureFormat.R8G8Snorm, Format.R8G8Uint => TextureFormat.R8G8Uint, Format.R8G8Sint => TextureFormat.R8G8Sint, Format.R16G16Float => TextureFormat.R16G16Float, Format.R16G16Unorm => TextureFormat.R16G16Unorm, Format.R16G16Snorm => TextureFormat.R16G16Snorm, Format.R16G16Uint => TextureFormat.R16G16Uint, Format.R16G16Sint => TextureFormat.R16G16Sint, Format.R32G32Float => TextureFormat.R32G32Float, Format.R32G32Uint => TextureFormat.R32G32Uint, Format.R32G32Sint => TextureFormat.R32G32Sint, Format.R8G8B8A8Unorm => TextureFormat.R8G8B8A8Unorm, Format.R8G8B8A8Snorm => TextureFormat.R8G8B8A8Snorm, Format.R8G8B8A8Uint => TextureFormat.R8G8B8A8Uint, Format.R8G8B8A8Sint => TextureFormat.R8G8B8A8Sint, Format.R8G8B8A8Srgb => TextureFormat.R8G8B8A8Unorm, Format.R16G16B16A16Float => TextureFormat.R16G16B16A16Float, Format.R16G16B16A16Unorm => TextureFormat.R16G16B16A16Unorm, Format.R16G16B16A16Snorm => TextureFormat.R16G16B16A16Snorm, Format.R16G16B16A16Uint => TextureFormat.R16G16B16A16Uint, Format.R16G16B16A16Sint => TextureFormat.R16G16B16A16Sint, Format.R32G32B32A32Float => TextureFormat.R32G32B32A32Float, Format.R32G32B32A32Uint => TextureFormat.R32G32B32A32Uint, Format.R32G32B32A32Sint => TextureFormat.R32G32B32A32Sint, Format.R10G10B10A2Unorm => TextureFormat.R10G10B10A2Unorm, Format.R10G10B10A2Uint => TextureFormat.R10G10B10A2Uint, Format.R11G11B10Float => TextureFormat.R11G11B10Float, _ => TextureFormat.Unknown, #pragma warning restore IDE0055 }; } } }