using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Synchronization;
using Ryujinx.Memory.Range;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Memory
{
///
/// Buffer, used to store vertex and index data, uniform and storage buffers, and others.
///
class Buffer : IRange, ISyncActionHandler, IDisposable
{
private const ulong GranularBufferThreshold = 4096;
private readonly GpuContext _context;
private readonly PhysicalMemory _physicalMemory;
///
/// Host buffer handle.
///
public BufferHandle Handle { get; }
///
/// Start address of the buffer in guest memory.
///
public ulong Address { get; }
///
/// Size of the buffer in bytes.
///
public ulong Size { get; }
///
/// End address of the buffer in guest memory.
///
public ulong EndAddress => Address + Size;
///
/// Increments when the buffer is (partially) unmapped or disposed.
///
public int UnmappedSequence { get; private set; }
///
/// Indicates if the buffer can be used in a sparse buffer mapping.
///
public bool SparseCompatible { get; }
///
/// Ranges of the buffer that have been modified on the GPU.
/// Ranges defined here cannot be updated from CPU until a CPU waiting sync point is reached.
/// Then, write tracking will signal, wait for GPU sync (generated at the syncpoint) and flush these regions.
///
///
/// This is null until at least one modification occurs.
///
private BufferModifiedRangeList _modifiedRanges = null;
private readonly MultiRegionHandle _memoryTrackingGranular;
private readonly RegionHandle _memoryTracking;
private readonly RegionSignal _externalFlushDelegate;
private readonly Action _loadDelegate;
private readonly Action _modifiedDelegate;
private HashSet _virtualDependencies;
private readonly ReaderWriterLockSlim _virtualDependenciesLock;
private int _sequenceNumber;
private readonly bool _useGranular;
private bool _syncActionRegistered;
private int _referenceCount = 1;
private ulong _dirtyStart = ulong.MaxValue;
private ulong _dirtyEnd = ulong.MaxValue;
///
/// Creates a new instance of the buffer.
///
/// GPU context that the buffer belongs to
/// Physical memory where the buffer is mapped
/// Start address of the buffer
/// Size of the buffer in bytes
/// Indicates if the buffer can be used in a sparse buffer mapping
/// Buffers which this buffer contains, and will inherit tracking handles from
public Buffer(
GpuContext context,
PhysicalMemory physicalMemory,
ulong address,
ulong size,
bool sparseCompatible,
IEnumerable baseBuffers = null)
{
_context = context;
_physicalMemory = physicalMemory;
Address = address;
Size = size;
SparseCompatible = sparseCompatible;
BufferAccess access = sparseCompatible ? BufferAccess.SparseCompatible : BufferAccess.Default;
Handle = context.Renderer.CreateBuffer((int)size, access, baseBuffers?.MaxBy(x => x.Size).Handle ?? BufferHandle.Null);
_useGranular = size > GranularBufferThreshold;
IEnumerable baseHandles = null;
if (baseBuffers != null)
{
baseHandles = baseBuffers.SelectMany(buffer =>
{
if (buffer._useGranular)
{
return buffer._memoryTrackingGranular.GetHandles();
}
else
{
return Enumerable.Repeat(buffer._memoryTracking, 1);
}
});
}
if (_useGranular)
{
_memoryTrackingGranular = physicalMemory.BeginGranularTracking(address, size, ResourceKind.Buffer, baseHandles);
_memoryTrackingGranular.RegisterPreciseAction(address, size, PreciseAction);
}
else
{
_memoryTracking = physicalMemory.BeginTracking(address, size, ResourceKind.Buffer);
if (baseHandles != null)
{
_memoryTracking.Reprotect(false);
foreach (IRegionHandle handle in baseHandles)
{
if (handle.Dirty)
{
_memoryTracking.Reprotect(true);
}
handle.Dispose();
}
}
_memoryTracking.RegisterPreciseAction(PreciseAction);
}
_externalFlushDelegate = new RegionSignal(ExternalFlush);
_loadDelegate = new Action(LoadRegion);
_modifiedDelegate = new Action(RegionModified);
_virtualDependenciesLock = new ReaderWriterLockSlim();
}
///
/// Gets a sub-range from the buffer, from a start address til a page boundary after the given size.
///
///
/// This can be used to bind and use sub-ranges of the buffer on the host API.
///
/// Start address of the sub-range, must be greater than or equal to the buffer address
/// Size in bytes of the sub-range, must be less than or equal to the buffer size
/// Whether the buffer will be written to by this use
/// The buffer sub-range
public BufferRange GetRangeAligned(ulong address, ulong size, bool write)
{
ulong end = ((address + size + MemoryManager.PageMask) & ~MemoryManager.PageMask) - Address;
ulong offset = address - Address;
return new BufferRange(Handle, (int)offset, (int)(end - offset), write);
}
///
/// Gets a sub-range from the buffer.
///
///
/// This can be used to bind and use sub-ranges of the buffer on the host API.
///
/// Start address of the sub-range, must be greater than or equal to the buffer address
/// Size in bytes of the sub-range, must be less than or equal to the buffer size
/// Whether the buffer will be written to by this use
/// The buffer sub-range
public BufferRange GetRange(ulong address, ulong size, bool write)
{
int offset = (int)(address - Address);
return new BufferRange(Handle, offset, (int)size, write);
}
///
/// Checks if a given range overlaps with the buffer.
///
/// Start address of the range
/// Size in bytes of the range
/// True if the range overlaps, false otherwise
public bool OverlapsWith(ulong address, ulong size)
{
return Address < address + size && address < EndAddress;
}
///
/// Checks if a given range is fully contained in the buffer.
///
/// Start address of the range
/// Size in bytes of the range
/// True if the range is contained, false otherwise
public bool FullyContains(ulong address, ulong size)
{
return address >= Address && address + size <= EndAddress;
}
///
/// Performs guest to host memory synchronization of the buffer data.
///
///
/// This causes the buffer data to be overwritten if a write was detected from the CPU,
/// since the last call to this method.
///
/// Start address of the range to synchronize
/// Size in bytes of the range to synchronize
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void SynchronizeMemory(ulong address, ulong size)
{
if (_useGranular)
{
_memoryTrackingGranular.QueryModified(address, size, _modifiedDelegate, _context.SequenceNumber);
}
else
{
if (_context.SequenceNumber != _sequenceNumber && _memoryTracking.DirtyOrVolatile())
{
_memoryTracking.Reprotect();
if (_modifiedRanges != null)
{
_modifiedRanges.ExcludeModifiedRegions(Address, Size, _loadDelegate);
}
else
{
_context.Renderer.SetBufferData(Handle, 0, _physicalMemory.GetSpan(Address, (int)Size));
CopyToDependantVirtualBuffers();
}
_sequenceNumber = _context.SequenceNumber;
_dirtyStart = ulong.MaxValue;
}
}
if (_dirtyStart != ulong.MaxValue)
{
ulong end = address + size;
if (end > _dirtyStart && address < _dirtyEnd)
{
if (_modifiedRanges != null)
{
_modifiedRanges.ExcludeModifiedRegions(_dirtyStart, _dirtyEnd - _dirtyStart, _loadDelegate);
}
else
{
LoadRegion(_dirtyStart, _dirtyEnd - _dirtyStart);
}
_dirtyStart = ulong.MaxValue;
}
}
}
///
/// Ensure that the modified range list exists.
///
private void EnsureRangeList()
{
_modifiedRanges ??= new BufferModifiedRangeList(_context, this, Flush);
}
///
/// Signal that the given region of the buffer has been modified.
///
/// The start address of the modified region
/// The size of the modified region
public void SignalModified(ulong address, ulong size)
{
EnsureRangeList();
_modifiedRanges.SignalModified(address, size);
if (!_syncActionRegistered)
{
_context.RegisterSyncAction(this);
_syncActionRegistered = true;
}
}
///
/// Indicate that mofifications in a given region of this buffer have been overwritten.
///
/// The start address of the region
/// The size of the region
public void ClearModified(ulong address, ulong size)
{
_modifiedRanges?.Clear(address, size);
}
///
/// Action to be performed when a syncpoint is reached after modification.
/// This will register read/write tracking to flush the buffer from GPU when its memory is used.
///
///
public bool SyncAction(bool syncpoint)
{
_syncActionRegistered = false;
if (_useGranular)
{
_modifiedRanges?.GetRanges(Address, Size, (address, size) =>
{
_memoryTrackingGranular.RegisterAction(address, size, _externalFlushDelegate);
SynchronizeMemory(address, size);
});
}
else
{
_memoryTracking.RegisterAction(_externalFlushDelegate);
SynchronizeMemory(Address, Size);
}
return true;
}
///
/// Inherit modified and dirty ranges from another buffer.
///
/// The buffer to inherit from
public void InheritModifiedRanges(Buffer from)
{
if (from._modifiedRanges != null && from._modifiedRanges.HasRanges)
{
if (from._syncActionRegistered && !_syncActionRegistered)
{
_context.RegisterSyncAction(this);
_syncActionRegistered = true;
}
void registerRangeAction(ulong address, ulong size)
{
if (_useGranular)
{
_memoryTrackingGranular.RegisterAction(address, size, _externalFlushDelegate);
}
else
{
_memoryTracking.RegisterAction(_externalFlushDelegate);
}
}
EnsureRangeList();
_modifiedRanges.InheritRanges(from._modifiedRanges, registerRangeAction);
}
if (from._dirtyStart != ulong.MaxValue)
{
ForceDirty(from._dirtyStart, from._dirtyEnd - from._dirtyStart);
}
}
///
/// Determine if a given region of the buffer has been modified, and must be flushed.
///
/// The start address of the region
/// The size of the region
///
public bool IsModified(ulong address, ulong size)
{
if (_modifiedRanges != null)
{
return _modifiedRanges.HasRange(address, size);
}
return false;
}
///
/// Clear the dirty range that overlaps with the given region.
///
/// Start address of the modified region
/// Size of the modified region
private void ClearDirty(ulong address, ulong size)
{
if (_dirtyStart != ulong.MaxValue)
{
ulong end = address + size;
if (end > _dirtyStart && address < _dirtyEnd)
{
if (address <= _dirtyStart)
{
// Cut off the start.
if (end < _dirtyEnd)
{
_dirtyStart = end;
}
else
{
_dirtyStart = ulong.MaxValue;
}
}
else if (end >= _dirtyEnd)
{
// Cut off the end.
_dirtyEnd = address;
}
// If fully contained, do nothing.
}
}
}
///
/// Indicate that a region of the buffer was modified, and must be loaded from memory.
///
/// Start address of the modified region
/// Size of the modified region
private void RegionModified(ulong mAddress, ulong mSize)
{
if (mAddress < Address)
{
mAddress = Address;
}
ulong maxSize = Address + Size - mAddress;
if (mSize > maxSize)
{
mSize = maxSize;
}
ClearDirty(mAddress, mSize);
if (_modifiedRanges != null)
{
_modifiedRanges.ExcludeModifiedRegions(mAddress, mSize, _loadDelegate);
}
else
{
LoadRegion(mAddress, mSize);
}
}
///
/// Load a region of the buffer from memory.
///
/// Start address of the modified region
/// Size of the modified region
private void LoadRegion(ulong mAddress, ulong mSize)
{
int offset = (int)(mAddress - Address);
_context.Renderer.SetBufferData(Handle, offset, _physicalMemory.GetSpan(mAddress, (int)mSize));
CopyToDependantVirtualBuffers(mAddress, mSize);
}
///
/// Force a region of the buffer to be dirty within the memory tracking. Avoids reprotection and nullifies sequence number check.
///
/// Start address of the modified region
/// Size of the region to force dirty
private void ForceTrackingDirty(ulong mAddress, ulong mSize)
{
if (_useGranular)
{
_memoryTrackingGranular.ForceDirty(mAddress, mSize);
}
else
{
_memoryTracking.ForceDirty();
_sequenceNumber--;
}
}
///
/// Force a region of the buffer to be dirty. Avoids reprotection and nullifies sequence number check.
///
/// Start address of the modified region
/// Size of the region to force dirty
public void ForceDirty(ulong mAddress, ulong mSize)
{
_modifiedRanges?.Clear(mAddress, mSize);
ulong end = mAddress + mSize;
if (_dirtyStart == ulong.MaxValue)
{
_dirtyStart = mAddress;
_dirtyEnd = end;
}
else
{
// Is the new range more than a page away from the existing one?
if ((long)(mAddress - _dirtyEnd) >= (long)MemoryManager.PageSize ||
(long)(_dirtyStart - end) >= (long)MemoryManager.PageSize)
{
ForceTrackingDirty(mAddress, mSize);
}
else
{
_dirtyStart = Math.Min(_dirtyStart, mAddress);
_dirtyEnd = Math.Max(_dirtyEnd, end);
}
}
}
///
/// Performs copy of all the buffer data from one buffer to another.
///
/// The destination buffer to copy the data into
/// The offset of the destination buffer to copy into
public void CopyTo(Buffer destination, int dstOffset)
{
CopyFromDependantVirtualBuffers();
_context.Renderer.Pipeline.CopyBuffer(Handle, destination.Handle, 0, dstOffset, (int)Size);
}
///
/// Flushes a range of the buffer.
/// This writes the range data back into guest memory.
///
/// Start address of the range
/// Size in bytes of the range
public void Flush(ulong address, ulong size)
{
int offset = (int)(address - Address);
using PinnedSpan data = _context.Renderer.GetBufferData(Handle, offset, (int)size);
// TODO: When write tracking shaders, they will need to be aware of changes in overlapping buffers.
_physicalMemory.WriteUntracked(address, CopyFromDependantVirtualBuffers(data.Get(), address, size));
}
///
/// Align a given address and size region to page boundaries.
///
/// The start address of the region
/// The size of the region
/// The page aligned address and size
private static (ulong address, ulong size) PageAlign(ulong address, ulong size)
{
ulong pageMask = MemoryManager.PageMask;
ulong rA = address & ~pageMask;
ulong rS = ((address + size + pageMask) & ~pageMask) - rA;
return (rA, rS);
}
///
/// Flush modified ranges of the buffer from another thread.
/// This will flush all modifications made before the active SyncNumber was set, and may block to wait for GPU sync.
///
/// Address of the memory action
/// Size in bytes
public void ExternalFlush(ulong address, ulong size)
{
_context.Renderer.BackgroundContextAction(() =>
{
var ranges = _modifiedRanges;
if (ranges != null)
{
(address, size) = PageAlign(address, size);
ranges.WaitForAndFlushRanges(address, size);
}
}, true);
}
///
/// An action to be performed when a precise memory access occurs to this resource.
/// For buffers, this skips flush-on-write by punching holes directly into the modified range list.
///
/// Address of the memory action
/// Size in bytes
/// True if the access was a write, false otherwise
private bool PreciseAction(ulong address, ulong size, bool write)
{
if (!write)
{
// We only want to skip flush-on-write.
return false;
}
ulong maxAddress = Math.Max(address, Address);
ulong minEndAddress = Math.Min(address + size, Address + Size);
if (maxAddress >= minEndAddress)
{
// Access doesn't overlap.
return false;
}
ForceDirty(maxAddress, minEndAddress - maxAddress);
return true;
}
///
/// Called when part of the memory for this buffer has been unmapped.
/// Calls are from non-GPU threads.
///
/// Start address of the unmapped region
/// Size of the unmapped region
public void Unmapped(ulong address, ulong size)
{
BufferModifiedRangeList modifiedRanges = _modifiedRanges;
modifiedRanges?.Clear(address, size);
UnmappedSequence++;
}
///
/// Adds a virtual buffer dependency, indicating that a virtual buffer depends on data from this buffer.
///
/// Dependant virtual buffer
public void AddVirtualDependency(MultiRangeBuffer virtualBuffer)
{
_virtualDependenciesLock.EnterWriteLock();
try
{
(_virtualDependencies ??= new()).Add(virtualBuffer);
}
finally
{
_virtualDependenciesLock.ExitWriteLock();
}
}
///
/// Removes a virtual buffer dependency, indicating that a virtual buffer no longer depends on data from this buffer.
///
/// Dependant virtual buffer
public void RemoveVirtualDependency(MultiRangeBuffer virtualBuffer)
{
_virtualDependenciesLock.EnterWriteLock();
try
{
if (_virtualDependencies != null)
{
_virtualDependencies.Remove(virtualBuffer);
if (_virtualDependencies.Count == 0)
{
_virtualDependencies = null;
}
}
}
finally
{
_virtualDependenciesLock.ExitWriteLock();
}
}
///
/// Copies the buffer data to all virtual buffers that depends on it.
///
public void CopyToDependantVirtualBuffers()
{
CopyToDependantVirtualBuffers(Address, Size);
}
///
/// Copies the buffer data inside the specifide range to all virtual buffers that depends on it.
///
/// Address of the range
/// Size of the range in bytes
public void CopyToDependantVirtualBuffers(ulong address, ulong size)
{
if (_virtualDependencies != null)
{
foreach (var virtualBuffer in _virtualDependencies)
{
CopyToDependantVirtualBuffer(virtualBuffer, address, size);
}
}
}
///
/// Copies all modified ranges from all virtual buffers back into this buffer.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void CopyFromDependantVirtualBuffers()
{
if (_virtualDependencies != null)
{
CopyFromDependantVirtualBuffersImpl();
}
}
///
/// Copies all modified ranges from all virtual buffers back into this buffer.
///
[MethodImpl(MethodImplOptions.NoInlining)]
private void CopyFromDependantVirtualBuffersImpl()
{
foreach (var virtualBuffer in _virtualDependencies.OrderBy(x => x.ModificationSequenceNumber))
{
virtualBuffer.ConsumeModifiedRegion(this, (mAddress, mSize) =>
{
// Get offset inside both this and the virtual buffer.
// Note that sometimes there is no right answer for the virtual offset,
// as the same physical range might be mapped multiple times inside a virtual buffer.
// We just assume it does not happen in practice as it can only be implemented correctly
// when the host has support for proper sparse mapping.
ulong mEndAddress = mAddress + mSize;
mAddress = Math.Max(mAddress, Address);
mSize = Math.Min(mEndAddress, EndAddress) - mAddress;
int physicalOffset = (int)(mAddress - Address);
int virtualOffset = virtualBuffer.Range.FindOffset(new(mAddress, mSize));
_context.Renderer.Pipeline.CopyBuffer(virtualBuffer.Handle, Handle, virtualOffset, physicalOffset, (int)mSize);
});
}
}
///
/// Copies all overlapping modified ranges from all virtual buffers back into this buffer, and returns an updated span with the data.
///
/// Span where the unmodified data will be taken from for the output
/// Address of the region to copy
/// Size of the region to copy in bytes
/// A span with , and the data for all modified ranges if any
private ReadOnlySpan CopyFromDependantVirtualBuffers(ReadOnlySpan dataSpan, ulong address, ulong size)
{
_virtualDependenciesLock.EnterReadLock();
try
{
if (_virtualDependencies != null)
{
byte[] storage = dataSpan.ToArray();
foreach (var virtualBuffer in _virtualDependencies.OrderBy(x => x.ModificationSequenceNumber))
{
virtualBuffer.ConsumeModifiedRegion(address, size, (mAddress, mSize) =>
{
// Get offset inside both this and the virtual buffer.
// Note that sometimes there is no right answer for the virtual offset,
// as the same physical range might be mapped multiple times inside a virtual buffer.
// We just assume it does not happen in practice as it can only be implemented correctly
// when the host has support for proper sparse mapping.
ulong mEndAddress = mAddress + mSize;
mAddress = Math.Max(mAddress, address);
mSize = Math.Min(mEndAddress, address + size) - mAddress;
int physicalOffset = (int)(mAddress - Address);
int virtualOffset = virtualBuffer.Range.FindOffset(new(mAddress, mSize));
_context.Renderer.Pipeline.CopyBuffer(virtualBuffer.Handle, Handle, virtualOffset, physicalOffset, (int)size);
virtualBuffer.GetData(storage.AsSpan().Slice((int)(mAddress - address), (int)mSize), virtualOffset, (int)mSize);
});
}
dataSpan = storage;
}
}
finally
{
_virtualDependenciesLock.ExitReadLock();
}
return dataSpan;
}
///
/// Copies the buffer data to the specified virtual buffer.
///
/// Virtual buffer to copy the data into
public void CopyToDependantVirtualBuffer(MultiRangeBuffer virtualBuffer)
{
CopyToDependantVirtualBuffer(virtualBuffer, Address, Size);
}
///
/// Copies the buffer data inside the given range to the specified virtual buffer.
///
/// Virtual buffer to copy the data into
/// Address of the range
/// Size of the range in bytes
public void CopyToDependantVirtualBuffer(MultiRangeBuffer virtualBuffer, ulong address, ulong size)
{
// Broadcast data to all ranges of the virtual buffer that are contained inside this buffer.
ulong lastOffset = 0;
while (virtualBuffer.TryGetPhysicalOffset(this, lastOffset, out ulong srcOffset, out ulong dstOffset, out ulong copySize))
{
ulong innerOffset = address - Address;
ulong innerEndOffset = (address + size) - Address;
lastOffset = dstOffset + copySize;
// Clamp range to the specified range.
ulong copySrcOffset = Math.Max(srcOffset, innerOffset);
ulong copySrcEndOffset = Math.Min(innerEndOffset, srcOffset + copySize);
if (copySrcEndOffset > copySrcOffset)
{
copySize = copySrcEndOffset - copySrcOffset;
dstOffset += copySrcOffset - srcOffset;
srcOffset = copySrcOffset;
_context.Renderer.Pipeline.CopyBuffer(Handle, virtualBuffer.Handle, (int)srcOffset, (int)dstOffset, (int)copySize);
}
}
}
///
/// Increments the buffer reference count.
///
public void IncrementReferenceCount()
{
_referenceCount++;
}
///
/// Decrements the buffer reference count.
///
public void DecrementReferenceCount()
{
if (--_referenceCount == 0)
{
DisposeData();
}
}
///
/// Disposes the host buffer's data, not its tracking handles.
///
public void DisposeData()
{
_modifiedRanges?.Clear();
_context.Renderer.DeleteBuffer(Handle);
UnmappedSequence++;
}
///
/// Disposes the host buffer.
///
public void Dispose()
{
_memoryTrackingGranular?.Dispose();
_memoryTracking?.Dispose();
DecrementReferenceCount();
}
}
}