using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
{
///
/// Vertex, tessellation and geometry as compute shader context.
///
class VtgAsComputeContext : IDisposable
{
private const int DummyBufferSize = 16;
private readonly GpuContext _context;
///
/// Cache of buffer textures used for vertex and index buffers.
///
private class BufferTextureCache : IDisposable
{
private readonly Dictionary _cache;
///
/// Creates a new instance of the buffer texture cache.
///
public BufferTextureCache()
{
_cache = new();
}
///
/// Gets a cached or creates and caches a buffer texture with the specified format.
///
/// Renderer where the texture will be used
/// Format of the buffer texture
/// Buffer texture
public ITexture Get(IRenderer renderer, Format format)
{
if (!_cache.TryGetValue(format, out ITexture bufferTexture))
{
bufferTexture = renderer.CreateTexture(new TextureCreateInfo(
1,
1,
1,
1,
1,
1,
1,
1,
format,
DepthStencilMode.Depth,
Target.TextureBuffer,
SwizzleComponent.Red,
SwizzleComponent.Green,
SwizzleComponent.Blue,
SwizzleComponent.Alpha));
_cache.Add(format, bufferTexture);
}
return bufferTexture;
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
foreach (var texture in _cache.Values)
{
texture.Release();
}
_cache.Clear();
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
}
///
/// Buffer state.
///
private struct Buffer
{
///
/// Buffer handle.
///
public BufferHandle Handle;
///
/// Current free buffer offset.
///
public int Offset;
///
/// Total buffer size in bytes.
///
public int Size;
}
///
/// Index buffer state.
///
private readonly struct IndexBuffer
{
///
/// Buffer handle.
///
public BufferHandle Handle { get; }
///
/// Index count.
///
public int Count { get; }
///
/// Size in bytes.
///
public int Size { get; }
///
/// Creates a new index buffer state.
///
/// Buffer handle
/// Index count
/// Size in bytes
public IndexBuffer(BufferHandle handle, int count, int size)
{
Handle = handle;
Count = count;
Size = size;
}
///
/// Creates a full range starting from the beggining of the buffer.
///
/// Range
public readonly BufferRange ToRange()
{
return new BufferRange(Handle, 0, Size);
}
///
/// Creates a range starting from the beggining of the buffer, with the specified size.
///
/// Size in bytes of the range
/// Range
public readonly BufferRange ToRange(int size)
{
return new BufferRange(Handle, 0, size);
}
}
private readonly BufferTextureCache[] _bufferTextures;
private BufferHandle _dummyBuffer;
private Buffer _vertexDataBuffer;
private Buffer _geometryVertexDataBuffer;
private Buffer _geometryIndexDataBuffer;
private BufferHandle _sequentialIndexBuffer;
private int _sequentialIndexBufferCount;
private readonly Dictionary _topologyRemapBuffers;
///
/// Vertex information buffer updater.
///
public VertexInfoBufferUpdater VertexInfoBufferUpdater { get; }
///
/// Creates a new instance of the vertex, tessellation and geometry as compute shader context.
///
///
public VtgAsComputeContext(GpuContext context)
{
_context = context;
_bufferTextures = new BufferTextureCache[Constants.TotalVertexBuffers + 2];
_topologyRemapBuffers = new();
VertexInfoBufferUpdater = new(context.Renderer);
}
///
/// Gets the number of complete primitives that can be formed with a given vertex count, for a given topology.
///
/// Topology
/// Vertex count
/// Total of complete primitives
public static int GetPrimitivesCount(PrimitiveTopology primitiveType, int count)
{
return primitiveType switch
{
PrimitiveTopology.Lines => count / 2,
PrimitiveTopology.LinesAdjacency => count / 4,
PrimitiveTopology.LineLoop => count > 1 ? count : 0,
PrimitiveTopology.LineStrip => Math.Max(count - 1, 0),
PrimitiveTopology.LineStripAdjacency => Math.Max(count - 3, 0),
PrimitiveTopology.Triangles => count / 3,
PrimitiveTopology.TrianglesAdjacency => count / 6,
PrimitiveTopology.TriangleStrip or
PrimitiveTopology.TriangleFan or
PrimitiveTopology.Polygon => Math.Max(count - 2, 0),
PrimitiveTopology.TriangleStripAdjacency => Math.Max(count - 2, 0) / 2,
PrimitiveTopology.Quads => (count / 4) * 2, // In triangles.
PrimitiveTopology.QuadStrip => Math.Max((count - 2) / 2, 0) * 2, // In triangles.
_ => count,
};
}
///
/// Gets the total of vertices that a single primitive has, for the specified topology.
///
/// Topology
/// Vertex count
private static int GetVerticesPerPrimitive(PrimitiveTopology primitiveType)
{
return primitiveType switch
{
PrimitiveTopology.Lines or
PrimitiveTopology.LineLoop or
PrimitiveTopology.LineStrip => 2,
PrimitiveTopology.LinesAdjacency or
PrimitiveTopology.LineStripAdjacency => 4,
PrimitiveTopology.Triangles or
PrimitiveTopology.TriangleStrip or
PrimitiveTopology.TriangleFan or
PrimitiveTopology.Polygon => 3,
PrimitiveTopology.TrianglesAdjacency or
PrimitiveTopology.TriangleStripAdjacency => 6,
PrimitiveTopology.Quads or
PrimitiveTopology.QuadStrip => 3, // 2 triangles.
_ => 1,
};
}
///
/// Gets a cached or creates a new buffer that can be used to map linear indices to ones
/// of a specified topology, and build complete primitives.
///
/// Topology
/// Number of input vertices that needs to be mapped using that buffer
/// Remap buffer range
public BufferRange GetOrCreateTopologyRemapBuffer(PrimitiveTopology topology, int count)
{
if (!_topologyRemapBuffers.TryGetValue(topology, out IndexBuffer buffer) || buffer.Count < count)
{
if (buffer.Handle != BufferHandle.Null)
{
_context.Renderer.DeleteBuffer(buffer.Handle);
}
buffer = CreateTopologyRemapBuffer(topology, count);
_topologyRemapBuffers[topology] = buffer;
return buffer.ToRange();
}
return buffer.ToRange(Math.Max(GetPrimitivesCount(topology, count) * GetVerticesPerPrimitive(topology), 1) * sizeof(uint));
}
///
/// Creates a new topology remap buffer.
///
/// Topology
/// Maximum of vertices that will be accessed
/// Remap buffer range
private IndexBuffer CreateTopologyRemapBuffer(PrimitiveTopology topology, int count)
{
// Size can't be zero as creating zero sized buffers is invalid.
Span data = new int[Math.Max(GetPrimitivesCount(topology, count) * GetVerticesPerPrimitive(topology), 1)];
switch (topology)
{
case PrimitiveTopology.Points:
case PrimitiveTopology.Lines:
case PrimitiveTopology.LinesAdjacency:
case PrimitiveTopology.Triangles:
case PrimitiveTopology.TrianglesAdjacency:
case PrimitiveTopology.Patches:
for (int index = 0; index < data.Length; index++)
{
data[index] = index;
}
break;
case PrimitiveTopology.LineLoop:
data[^1] = 0;
for (int index = 0; index < ((data.Length - 1) & ~1); index += 2)
{
data[index] = index >> 1;
data[index + 1] = (index >> 1) + 1;
}
break;
case PrimitiveTopology.LineStrip:
for (int index = 0; index < ((data.Length - 1) & ~1); index += 2)
{
data[index] = index >> 1;
data[index + 1] = (index >> 1) + 1;
}
break;
case PrimitiveTopology.TriangleStrip:
int tsTrianglesCount = data.Length / 3;
int tsOutIndex = 3;
if (tsTrianglesCount > 0)
{
data[0] = 0;
data[1] = 1;
data[2] = 2;
}
for (int tri = 1; tri < tsTrianglesCount; tri++)
{
int baseIndex = tri * 3;
if ((tri & 1) != 0)
{
data[baseIndex] = tsOutIndex - 1;
data[baseIndex + 1] = tsOutIndex - 2;
data[baseIndex + 2] = tsOutIndex++;
}
else
{
data[baseIndex] = tsOutIndex - 2;
data[baseIndex + 1] = tsOutIndex - 1;
data[baseIndex + 2] = tsOutIndex++;
}
}
break;
case PrimitiveTopology.TriangleFan:
case PrimitiveTopology.Polygon:
int tfTrianglesCount = data.Length / 3;
int tfOutIndex = 1;
for (int index = 0; index < tfTrianglesCount * 3; index += 3)
{
data[index] = 0;
data[index + 1] = tfOutIndex;
data[index + 2] = ++tfOutIndex;
}
break;
case PrimitiveTopology.Quads:
int qQuadsCount = data.Length / 6;
for (int quad = 0; quad < qQuadsCount; quad++)
{
int index = quad * 6;
int qIndex = quad * 4;
data[index] = qIndex;
data[index + 1] = qIndex + 1;
data[index + 2] = qIndex + 2;
data[index + 3] = qIndex;
data[index + 4] = qIndex + 2;
data[index + 5] = qIndex + 3;
}
break;
case PrimitiveTopology.QuadStrip:
int qsQuadsCount = data.Length / 6;
if (qsQuadsCount > 0)
{
data[0] = 0;
data[1] = 1;
data[2] = 2;
data[3] = 0;
data[4] = 2;
data[5] = 3;
}
for (int quad = 1; quad < qsQuadsCount; quad++)
{
int index = quad * 6;
int qIndex = quad * 2;
data[index] = qIndex + 1;
data[index + 1] = qIndex;
data[index + 2] = qIndex + 2;
data[index + 3] = qIndex + 1;
data[index + 4] = qIndex + 2;
data[index + 5] = qIndex + 3;
}
break;
case PrimitiveTopology.LineStripAdjacency:
for (int index = 0; index < ((data.Length - 3) & ~3); index += 4)
{
int lIndex = index >> 2;
data[index] = lIndex;
data[index + 1] = lIndex + 1;
data[index + 2] = lIndex + 2;
data[index + 3] = lIndex + 3;
}
break;
case PrimitiveTopology.TriangleStripAdjacency:
int tsaTrianglesCount = data.Length / 6;
int tsaOutIndex = 6;
if (tsaTrianglesCount > 0)
{
data[0] = 0;
data[1] = 1;
data[2] = 2;
data[3] = 3;
data[4] = 4;
data[5] = 5;
}
for (int tri = 1; tri < tsaTrianglesCount; tri++)
{
int baseIndex = tri * 6;
if ((tri & 1) != 0)
{
data[baseIndex] = tsaOutIndex - 2;
data[baseIndex + 1] = tsaOutIndex - 1;
data[baseIndex + 2] = tsaOutIndex - 4;
data[baseIndex + 3] = tsaOutIndex - 3;
data[baseIndex + 4] = tsaOutIndex++;
data[baseIndex + 5] = tsaOutIndex++;
}
else
{
data[baseIndex] = tsaOutIndex - 4;
data[baseIndex + 1] = tsaOutIndex - 3;
data[baseIndex + 2] = tsaOutIndex - 2;
data[baseIndex + 3] = tsaOutIndex - 1;
data[baseIndex + 4] = tsaOutIndex++;
data[baseIndex + 5] = tsaOutIndex++;
}
}
break;
}
ReadOnlySpan dataBytes = MemoryMarshal.Cast(data);
BufferHandle buffer = _context.Renderer.CreateBuffer(dataBytes.Length);
_context.Renderer.SetBufferData(buffer, 0, dataBytes);
return new IndexBuffer(buffer, count, dataBytes.Length);
}
///
/// Gets a buffer texture with a given format, for the given index.
///
/// Index of the buffer texture
/// Format of the buffer texture
/// Buffer texture
public ITexture EnsureBufferTexture(int index, Format format)
{
return (_bufferTextures[index] ??= new()).Get(_context.Renderer, format);
}
///
/// Gets the offset and size of usable storage on the output vertex buffer.
///
/// Size in bytes that will be used
/// Usable offset and size on the buffer
public (int, int) GetVertexDataBuffer(int size)
{
return EnsureBuffer(ref _vertexDataBuffer, size);
}
///
/// Gets the offset and size of usable storage on the output geometry shader vertex buffer.
///
/// Size in bytes that will be used
/// Usable offset and size on the buffer
public (int, int) GetGeometryVertexDataBuffer(int size)
{
return EnsureBuffer(ref _geometryVertexDataBuffer, size);
}
///
/// Gets the offset and size of usable storage on the output geometry shader index buffer.
///
/// Size in bytes that will be used
/// Usable offset and size on the buffer
public (int, int) GetGeometryIndexDataBuffer(int size)
{
return EnsureBuffer(ref _geometryIndexDataBuffer, size);
}
///
/// Gets a range of the output vertex buffer for binding.
///
/// Offset of the range
/// Size of the range in bytes
/// Indicates if the buffer contents will be modified
/// Range
public BufferRange GetVertexDataBufferRange(int offset, int size, bool write)
{
return new BufferRange(_vertexDataBuffer.Handle, offset, size, write);
}
///
/// Gets a range of the output geometry shader vertex buffer for binding.
///
/// Offset of the range
/// Size of the range in bytes
/// Indicates if the buffer contents will be modified
/// Range
public BufferRange GetGeometryVertexDataBufferRange(int offset, int size, bool write)
{
return new BufferRange(_geometryVertexDataBuffer.Handle, offset, size, write);
}
///
/// Gets a range of the output geometry shader index buffer for binding.
///
/// Offset of the range
/// Size of the range in bytes
/// Indicates if the buffer contents will be modified
/// Range
public BufferRange GetGeometryIndexDataBufferRange(int offset, int size, bool write)
{
return new BufferRange(_geometryIndexDataBuffer.Handle, offset, size, write);
}
///
/// Gets the range for a dummy 16 bytes buffer, filled with zeros.
///
/// Dummy buffer range
public BufferRange GetDummyBufferRange()
{
if (_dummyBuffer == BufferHandle.Null)
{
_dummyBuffer = _context.Renderer.CreateBuffer(DummyBufferSize);
_context.Renderer.Pipeline.ClearBuffer(_dummyBuffer, 0, DummyBufferSize, 0);
}
return new BufferRange(_dummyBuffer, 0, DummyBufferSize);
}
///
/// Gets the range for a sequential index buffer, with ever incrementing index values.
///
/// Minimum number of indices that the buffer should have
/// Buffer handle
public BufferHandle GetSequentialIndexBuffer(int count)
{
if (_sequentialIndexBufferCount < count)
{
if (_sequentialIndexBuffer != BufferHandle.Null)
{
_context.Renderer.DeleteBuffer(_sequentialIndexBuffer);
}
_sequentialIndexBuffer = _context.Renderer.CreateBuffer(count * sizeof(uint));
_sequentialIndexBufferCount = count;
Span data = new int[count];
for (int index = 0; index < count; index++)
{
data[index] = index;
}
_context.Renderer.SetBufferData(_sequentialIndexBuffer, 0, MemoryMarshal.Cast(data));
}
return _sequentialIndexBuffer;
}
///
/// Ensure that a buffer exists, is large enough, and allocates a sub-region of the specified size inside the buffer.
///
/// Buffer state
/// Required size in bytes
/// Allocated offset and size
private (int, int) EnsureBuffer(ref Buffer buffer, int size)
{
int newSize = buffer.Offset + size;
if (buffer.Size < newSize)
{
if (buffer.Handle != BufferHandle.Null)
{
_context.Renderer.DeleteBuffer(buffer.Handle);
}
buffer.Handle = _context.Renderer.CreateBuffer(newSize);
buffer.Size = newSize;
}
int offset = buffer.Offset;
buffer.Offset = BitUtils.AlignUp(newSize, _context.Capabilities.StorageBufferOffsetAlignment);
return (offset, size);
}
///
/// Frees all buffer sub-regions that were previously allocated.
///
public void FreeBuffers()
{
_vertexDataBuffer.Offset = 0;
_geometryVertexDataBuffer.Offset = 0;
_geometryIndexDataBuffer.Offset = 0;
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
for (int index = 0; index < _bufferTextures.Length; index++)
{
_bufferTextures[index]?.Dispose();
_bufferTextures[index] = null;
}
DestroyIfNotNull(ref _dummyBuffer);
DestroyIfNotNull(ref _vertexDataBuffer.Handle);
DestroyIfNotNull(ref _geometryVertexDataBuffer.Handle);
DestroyIfNotNull(ref _geometryIndexDataBuffer.Handle);
DestroyIfNotNull(ref _sequentialIndexBuffer);
foreach (var indexBuffer in _topologyRemapBuffers.Values)
{
_context.Renderer.DeleteBuffer(indexBuffer.Handle);
}
_topologyRemapBuffers.Clear();
}
}
///
/// Deletes a buffer if the handle is valid (not null), then sets the handle to null.
///
/// Buffer handle
private void DestroyIfNotNull(ref BufferHandle handle)
{
if (handle != BufferHandle.Null)
{
_context.Renderer.DeleteBuffer(handle);
handle = BufferHandle.Null;
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
}
}