using Ryujinx.Audio.Common; using Ryujinx.Audio.Renderer.Common; using Ryujinx.Audio.Renderer.Dsp.State; using Ryujinx.Common.Logging; using Ryujinx.Memory; using System; using System.Diagnostics; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.Arm; using System.Runtime.Intrinsics.X86; using static Ryujinx.Audio.Renderer.Parameter.VoiceInParameter; namespace Ryujinx.Audio.Renderer.Dsp { public static class DataSourceHelper { private const int FixedPointPrecision = 15; public struct WaveBufferInformation { public uint SourceSampleRate; public float Pitch; public ulong ExtraParameter; public ulong ExtraParameterSize; public int ChannelIndex; public int ChannelCount; public DecodingBehaviour DecodingBehaviour; public SampleRateConversionQuality SrcQuality; public SampleFormat SampleFormat; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static int GetPitchLimitBySrcQuality(SampleRateConversionQuality quality) { return quality switch { SampleRateConversionQuality.Default or SampleRateConversionQuality.Low => 4, SampleRateConversionQuality.High => 8, _ => throw new ArgumentException(quality.ToString()), }; } public static void ProcessWaveBuffers(IVirtualMemoryManager memoryManager, Span<float> outputBuffer, ref WaveBufferInformation info, Span<WaveBuffer> wavebuffers, ref VoiceUpdateState voiceState, uint targetSampleRate, int sampleCount) { const int TempBufferSize = 0x3F00; Span<short> tempBuffer = stackalloc short[TempBufferSize]; float sampleRateRatio = (float)info.SourceSampleRate / targetSampleRate * info.Pitch; float fraction = voiceState.Fraction; int waveBufferIndex = (int)voiceState.WaveBufferIndex; ulong playedSampleCount = voiceState.PlayedSampleCount; int offset = voiceState.Offset; uint waveBufferConsumed = voiceState.WaveBufferConsumed; int pitchMaxLength = GetPitchLimitBySrcQuality(info.SrcQuality); int totalNeededSize = (int)MathF.Truncate(fraction + sampleRateRatio * sampleCount); if (totalNeededSize + pitchMaxLength <= TempBufferSize && totalNeededSize >= 0) { int sourceSampleCountToProcess = sampleCount; int maxSampleCountPerIteration = Math.Min((int)MathF.Truncate((TempBufferSize - fraction) / sampleRateRatio), sampleCount); bool isStarving = false; int i = 0; while (i < sourceSampleCountToProcess) { int tempBufferIndex = 0; if (!info.DecodingBehaviour.HasFlag(DecodingBehaviour.SkipPitchAndSampleRateConversion)) { voiceState.Pitch.AsSpan()[..pitchMaxLength].CopyTo(tempBuffer); tempBufferIndex += pitchMaxLength; } int sampleCountToProcess = Math.Min(sourceSampleCountToProcess, maxSampleCountPerIteration); int y = 0; int sampleCountToDecode = (int)MathF.Truncate(fraction + sampleRateRatio * sampleCountToProcess); while (y < sampleCountToDecode) { if (waveBufferIndex >= Constants.VoiceWaveBufferCount) { waveBufferIndex = 0; playedSampleCount = 0; } if (!voiceState.IsWaveBufferValid[waveBufferIndex]) { isStarving = true; break; } ref WaveBuffer waveBuffer = ref wavebuffers[waveBufferIndex]; if (offset == 0 && info.SampleFormat == SampleFormat.Adpcm && waveBuffer.Context != 0) { voiceState.LoopContext = memoryManager.Read<AdpcmLoopContext>(waveBuffer.Context); } Span<short> tempSpan = tempBuffer[(tempBufferIndex + y)..]; int decodedSampleCount = -1; int targetSampleStartOffset; int targetSampleEndOffset; if (voiceState.LoopCount > 0 && waveBuffer.LoopStartSampleOffset != 0 && waveBuffer.LoopEndSampleOffset != 0 && waveBuffer.LoopStartSampleOffset <= waveBuffer.LoopEndSampleOffset) { targetSampleStartOffset = (int)waveBuffer.LoopStartSampleOffset; targetSampleEndOffset = (int)waveBuffer.LoopEndSampleOffset; } else { targetSampleStartOffset = (int)waveBuffer.StartSampleOffset; targetSampleEndOffset = (int)waveBuffer.EndSampleOffset; } int targetWaveBufferSampleCount = targetSampleEndOffset - targetSampleStartOffset; switch (info.SampleFormat) { case SampleFormat.Adpcm: ReadOnlySpan<byte> waveBufferAdpcm = ReadOnlySpan<byte>.Empty; if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0) { // TODO: we are possibly copying a lot of unneeded data here, we should only take what we need. waveBufferAdpcm = memoryManager.GetSpan(waveBuffer.Buffer, (int)waveBuffer.BufferSize); } ReadOnlySpan<short> coefficients = MemoryMarshal.Cast<byte, short>(memoryManager.GetSpan(info.ExtraParameter, (int)info.ExtraParameterSize)); decodedSampleCount = AdpcmHelper.Decode(tempSpan, waveBufferAdpcm, targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y, coefficients, ref voiceState.LoopContext); break; case SampleFormat.PcmInt16: ReadOnlySpan<short> waveBufferPcm16 = ReadOnlySpan<short>.Empty; if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0) { ulong bufferOffset = waveBuffer.Buffer + PcmHelper.GetBufferOffset<short>(targetSampleStartOffset, offset, info.ChannelCount); int bufferSize = PcmHelper.GetBufferSize<short>(targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y) * info.ChannelCount; waveBufferPcm16 = MemoryMarshal.Cast<byte, short>(memoryManager.GetSpan(bufferOffset, bufferSize)); } decodedSampleCount = PcmHelper.Decode(tempSpan, waveBufferPcm16, targetSampleStartOffset, targetSampleEndOffset, info.ChannelIndex, info.ChannelCount); break; case SampleFormat.PcmFloat: ReadOnlySpan<float> waveBufferPcmFloat = ReadOnlySpan<float>.Empty; if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0) { ulong bufferOffset = waveBuffer.Buffer + PcmHelper.GetBufferOffset<float>(targetSampleStartOffset, offset, info.ChannelCount); int bufferSize = PcmHelper.GetBufferSize<float>(targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y) * info.ChannelCount; waveBufferPcmFloat = MemoryMarshal.Cast<byte, float>(memoryManager.GetSpan(bufferOffset, bufferSize)); } decodedSampleCount = PcmHelper.Decode(tempSpan, waveBufferPcmFloat, targetSampleStartOffset, targetSampleEndOffset, info.ChannelIndex, info.ChannelCount); break; default: Logger.Error?.Print(LogClass.AudioRenderer, "Unsupported sample format " + info.SampleFormat); break; } Debug.Assert(decodedSampleCount <= sampleCountToDecode); if (decodedSampleCount < 0) { Logger.Warning?.Print(LogClass.AudioRenderer, "Decoding failed, skipping WaveBuffer"); voiceState.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount); decodedSampleCount = 0; } y += decodedSampleCount; offset += decodedSampleCount; playedSampleCount += (uint)decodedSampleCount; if (offset >= targetWaveBufferSampleCount || decodedSampleCount == 0) { offset = 0; if (waveBuffer.Looping) { voiceState.LoopCount++; if (waveBuffer.LoopCount >= 0) { if (decodedSampleCount == 0 || voiceState.LoopCount > waveBuffer.LoopCount) { voiceState.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount); } } if (decodedSampleCount == 0) { isStarving = true; break; } if (info.DecodingBehaviour.HasFlag(DecodingBehaviour.PlayedSampleCountResetWhenLooping)) { playedSampleCount = 0; } } else { voiceState.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount); } } } Span<int> outputSpanInt = MemoryMarshal.Cast<float, int>(outputBuffer[i..]); if (info.DecodingBehaviour.HasFlag(DecodingBehaviour.SkipPitchAndSampleRateConversion)) { for (int j = 0; j < y; j++) { outputBuffer[j] = tempBuffer[j]; } } else { Span<short> tempSpan = tempBuffer[(tempBufferIndex + y)..]; tempSpan[..(sampleCountToDecode - y)].Clear(); ToFloat(outputBuffer, outputSpanInt, sampleCountToProcess); ResamplerHelper.Resample(outputBuffer, tempBuffer, sampleRateRatio, ref fraction, sampleCountToProcess, info.SrcQuality, y != sourceSampleCountToProcess || info.Pitch != 1.0f); tempBuffer.Slice(sampleCountToDecode, pitchMaxLength).CopyTo(voiceState.Pitch.AsSpan()); } i += sampleCountToProcess; } Debug.Assert(sourceSampleCountToProcess == i || !isStarving); voiceState.WaveBufferConsumed = waveBufferConsumed; voiceState.Offset = offset; voiceState.PlayedSampleCount = playedSampleCount; voiceState.WaveBufferIndex = (uint)waveBufferIndex; voiceState.Fraction = fraction; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void ToFloatAvx(Span<float> output, ReadOnlySpan<int> input, int sampleCount) { ReadOnlySpan<Vector256<int>> inputVec = MemoryMarshal.Cast<int, Vector256<int>>(input); Span<Vector256<float>> outputVec = MemoryMarshal.Cast<float, Vector256<float>>(output); int sisdStart = inputVec.Length * 8; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = Avx.ConvertToVector256Single(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void ToFloatSse2(Span<float> output, ReadOnlySpan<int> input, int sampleCount) { ReadOnlySpan<Vector128<int>> inputVec = MemoryMarshal.Cast<int, Vector128<int>>(input); Span<Vector128<float>> outputVec = MemoryMarshal.Cast<float, Vector128<float>>(output); int sisdStart = inputVec.Length * 4; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = Sse2.ConvertToVector128Single(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void ToFloatAdvSimd(Span<float> output, ReadOnlySpan<int> input, int sampleCount) { ReadOnlySpan<Vector128<int>> inputVec = MemoryMarshal.Cast<int, Vector128<int>>(input); Span<Vector128<float>> outputVec = MemoryMarshal.Cast<float, Vector128<float>>(output); int sisdStart = inputVec.Length * 4; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = AdvSimd.ConvertToSingle(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToFloatSlow(Span<float> output, ReadOnlySpan<int> input, int sampleCount) { for (int i = 0; i < sampleCount; i++) { output[i] = input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToFloat(Span<float> output, ReadOnlySpan<int> input, int sampleCount) { if (Avx.IsSupported) { ToFloatAvx(output, input, sampleCount); } else if (Sse2.IsSupported) { ToFloatSse2(output, input, sampleCount); } else if (AdvSimd.IsSupported) { ToFloatAdvSimd(output, input, sampleCount); } else { ToFloatSlow(output, input, sampleCount); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToIntAvx(Span<int> output, ReadOnlySpan<float> input, int sampleCount) { ReadOnlySpan<Vector256<float>> inputVec = MemoryMarshal.Cast<float, Vector256<float>>(input); Span<Vector256<int>> outputVec = MemoryMarshal.Cast<int, Vector256<int>>(output); int sisdStart = inputVec.Length * 8; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = Avx.ConvertToVector256Int32(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = (int)input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToIntSse2(Span<int> output, ReadOnlySpan<float> input, int sampleCount) { ReadOnlySpan<Vector128<float>> inputVec = MemoryMarshal.Cast<float, Vector128<float>>(input); Span<Vector128<int>> outputVec = MemoryMarshal.Cast<int, Vector128<int>>(output); int sisdStart = inputVec.Length * 4; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = Sse2.ConvertToVector128Int32(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = (int)input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToIntAdvSimd(Span<int> output, ReadOnlySpan<float> input, int sampleCount) { ReadOnlySpan<Vector128<float>> inputVec = MemoryMarshal.Cast<float, Vector128<float>>(input); Span<Vector128<int>> outputVec = MemoryMarshal.Cast<int, Vector128<int>>(output); int sisdStart = inputVec.Length * 4; for (int i = 0; i < inputVec.Length; i++) { outputVec[i] = AdvSimd.ConvertToInt32RoundToZero(inputVec[i]); } for (int i = sisdStart; i < sampleCount; i++) { output[i] = (int)input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToIntSlow(Span<int> output, ReadOnlySpan<float> input, int sampleCount) { for (int i = 0; i < sampleCount; i++) { output[i] = (int)input[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ToInt(Span<int> output, ReadOnlySpan<float> input, int sampleCount) { if (Avx.IsSupported) { ToIntAvx(output, input, sampleCount); } else if (Sse2.IsSupported) { ToIntSse2(output, input, sampleCount); } else if (AdvSimd.IsSupported) { ToIntAdvSimd(output, input, sampleCount); } else { ToIntSlow(output, input, sampleCount); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void RemapLegacyChannelEffectMappingToChannelResourceMapping(bool isSupported, Span<ushort> bufferIndices, uint channelCount) { if (!isSupported && channelCount == 6) { ushort backLeft = bufferIndices[2]; ushort backRight = bufferIndices[3]; ushort frontCenter = bufferIndices[4]; ushort lowFrequency = bufferIndices[5]; bufferIndices[2] = frontCenter; bufferIndices[3] = lowFrequency; bufferIndices[4] = backLeft; bufferIndices[5] = backRight; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void RemapChannelResourceMappingToLegacy(bool isSupported, Span<ushort> bufferIndices, uint channelCount) { if (isSupported && channelCount == 6) { ushort frontCenter = bufferIndices[2]; ushort lowFrequency = bufferIndices[3]; ushort backLeft = bufferIndices[4]; ushort backRight = bufferIndices[5]; bufferIndices[2] = backLeft; bufferIndices[3] = backRight; bufferIndices[4] = frontCenter; bufferIndices[5] = lowFrequency; } } } }