using Ryujinx.Audio.Renderer.Dsp.State; using Ryujinx.Audio.Renderer.Parameter.Effect; using Ryujinx.Audio.Renderer.Server.Effect; using Ryujinx.Audio.Renderer.Utils.Math; using System; using System.Diagnostics; using System.Numerics; using System.Runtime.CompilerServices; namespace Ryujinx.Audio.Renderer.Dsp.Command { public class DelayCommand : ICommand { public bool Enabled { get; set; } public int NodeId { get; } public CommandType CommandType => CommandType.Delay; public uint EstimatedProcessingTime { get; set; } public DelayParameter Parameter => _parameter; public Memory State { get; } public ulong WorkBuffer { get; } public ushort[] OutputBufferIndices { get; } public ushort[] InputBufferIndices { get; } public bool IsEffectEnabled { get; } private DelayParameter _parameter; private const int FixedPointPrecision = 14; public DelayCommand(uint bufferOffset, DelayParameter parameter, Memory state, bool isEnabled, ulong workBuffer, int nodeId, bool newEffectChannelMappingSupported) { Enabled = true; NodeId = nodeId; _parameter = parameter; State = state; WorkBuffer = workBuffer; IsEffectEnabled = isEnabled; InputBufferIndices = new ushort[Constants.VoiceChannelCountMax]; OutputBufferIndices = new ushort[Constants.VoiceChannelCountMax]; for (int i = 0; i < Parameter.ChannelCount; i++) { InputBufferIndices[i] = (ushort)(bufferOffset + Parameter.Input[i]); OutputBufferIndices[i] = (ushort)(bufferOffset + Parameter.Output[i]); } DataSourceHelper.RemapLegacyChannelEffectMappingToChannelResourceMapping(newEffectChannelMappingSupported, InputBufferIndices, Parameter.ChannelCount); DataSourceHelper.RemapLegacyChannelEffectMappingToChannelResourceMapping(newEffectChannelMappingSupported, OutputBufferIndices, Parameter.ChannelCount); } [MethodImpl(MethodImplOptions.AggressiveInlining | MethodImplOptions.AggressiveOptimization)] private unsafe void ProcessDelayMono(ref DelayState state, float* outputBuffer, float* inputBuffer, uint sampleCount) { const ushort channelCount = 1; float feedbackGain = FixedPointHelper.ToFloat(Parameter.FeedbackGain, FixedPointPrecision); float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision); float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision); float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision); for (int i = 0; i < sampleCount; i++) { float input = inputBuffer[i] * 64; float delayLineValue = state.DelayLines[0].Read(); float temp = input * inGain + delayLineValue * feedbackGain; state.UpdateLowPassFilter(ref temp, channelCount); outputBuffer[i] = (input * dryGain + delayLineValue * outGain) / 64; } } [MethodImpl(MethodImplOptions.AggressiveInlining | MethodImplOptions.AggressiveOptimization)] private unsafe void ProcessDelayStereo(ref DelayState state, Span outputBuffers, ReadOnlySpan inputBuffers, uint sampleCount) { const ushort channelCount = 2; float delayFeedbackBaseGain = state.DelayFeedbackBaseGain; float delayFeedbackCrossGain = state.DelayFeedbackCrossGain; float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision); float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision); float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision); Matrix2x2 delayFeedback = new Matrix2x2(delayFeedbackBaseGain, delayFeedbackCrossGain, delayFeedbackCrossGain, delayFeedbackBaseGain); for (int i = 0; i < sampleCount; i++) { Vector2 channelInput = new Vector2 { X = *((float*)inputBuffers[0] + i) * 64, Y = *((float*)inputBuffers[1] + i) * 64, }; Vector2 delayLineValues = new Vector2() { X = state.DelayLines[0].Read(), Y = state.DelayLines[1].Read(), }; Vector2 temp = MatrixHelper.Transform(ref delayLineValues, ref delayFeedback) + channelInput * inGain; state.UpdateLowPassFilter(ref Unsafe.As(ref temp), channelCount); *((float*)outputBuffers[0] + i) = (channelInput.X * dryGain + delayLineValues.X * outGain) / 64; *((float*)outputBuffers[1] + i) = (channelInput.Y * dryGain + delayLineValues.Y * outGain) / 64; } } [MethodImpl(MethodImplOptions.AggressiveInlining | MethodImplOptions.AggressiveOptimization)] private unsafe void ProcessDelayQuadraphonic(ref DelayState state, Span outputBuffers, ReadOnlySpan inputBuffers, uint sampleCount) { const ushort channelCount = 4; float delayFeedbackBaseGain = state.DelayFeedbackBaseGain; float delayFeedbackCrossGain = state.DelayFeedbackCrossGain; float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision); float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision); float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision); Matrix4x4 delayFeedback = new Matrix4x4(delayFeedbackBaseGain, delayFeedbackCrossGain, delayFeedbackCrossGain, 0.0f, delayFeedbackCrossGain, delayFeedbackBaseGain, 0.0f, delayFeedbackCrossGain, delayFeedbackCrossGain, 0.0f, delayFeedbackBaseGain, delayFeedbackCrossGain, 0.0f, delayFeedbackCrossGain, delayFeedbackCrossGain, delayFeedbackBaseGain); for (int i = 0; i < sampleCount; i++) { Vector4 channelInput = new Vector4 { X = *((float*)inputBuffers[0] + i) * 64, Y = *((float*)inputBuffers[1] + i) * 64, Z = *((float*)inputBuffers[2] + i) * 64, W = *((float*)inputBuffers[3] + i) * 64 }; Vector4 delayLineValues = new Vector4() { X = state.DelayLines[0].Read(), Y = state.DelayLines[1].Read(), Z = state.DelayLines[2].Read(), W = state.DelayLines[3].Read() }; Vector4 temp = MatrixHelper.Transform(ref delayLineValues, ref delayFeedback) + channelInput * inGain; state.UpdateLowPassFilter(ref Unsafe.As(ref temp), channelCount); *((float*)outputBuffers[0] + i) = (channelInput.X * dryGain + delayLineValues.X * outGain) / 64; *((float*)outputBuffers[1] + i) = (channelInput.Y * dryGain + delayLineValues.Y * outGain) / 64; *((float*)outputBuffers[2] + i) = (channelInput.Z * dryGain + delayLineValues.Z * outGain) / 64; *((float*)outputBuffers[3] + i) = (channelInput.W * dryGain + delayLineValues.W * outGain) / 64; } } [MethodImpl(MethodImplOptions.AggressiveInlining | MethodImplOptions.AggressiveOptimization)] private unsafe void ProcessDelaySurround(ref DelayState state, Span outputBuffers, ReadOnlySpan inputBuffers, uint sampleCount) { const ushort channelCount = 6; float feedbackGain = FixedPointHelper.ToFloat(Parameter.FeedbackGain, FixedPointPrecision); float delayFeedbackBaseGain = state.DelayFeedbackBaseGain; float delayFeedbackCrossGain = state.DelayFeedbackCrossGain; float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision); float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision); float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision); Matrix6x6 delayFeedback = new Matrix6x6(delayFeedbackBaseGain, 0.0f, delayFeedbackCrossGain, 0.0f, delayFeedbackCrossGain, 0.0f, 0.0f, delayFeedbackBaseGain, delayFeedbackCrossGain, 0.0f, 0.0f, delayFeedbackCrossGain, delayFeedbackCrossGain, delayFeedbackCrossGain, delayFeedbackBaseGain, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, feedbackGain, 0.0f, 0.0f, delayFeedbackCrossGain, 0.0f, 0.0f, 0.0f, delayFeedbackBaseGain, delayFeedbackCrossGain, 0.0f, delayFeedbackCrossGain, 0.0f, 0.0f, delayFeedbackCrossGain, delayFeedbackBaseGain); for (int i = 0; i < sampleCount; i++) { Vector6 channelInput = new Vector6 { X = *((float*)inputBuffers[0] + i) * 64, Y = *((float*)inputBuffers[1] + i) * 64, Z = *((float*)inputBuffers[2] + i) * 64, W = *((float*)inputBuffers[3] + i) * 64, V = *((float*)inputBuffers[4] + i) * 64, U = *((float*)inputBuffers[5] + i) * 64 }; Vector6 delayLineValues = new Vector6 { X = state.DelayLines[0].Read(), Y = state.DelayLines[1].Read(), Z = state.DelayLines[2].Read(), W = state.DelayLines[3].Read(), V = state.DelayLines[4].Read(), U = state.DelayLines[5].Read() }; Vector6 temp = MatrixHelper.Transform(ref delayLineValues, ref delayFeedback) + channelInput * inGain; state.UpdateLowPassFilter(ref Unsafe.As(ref temp), channelCount); *((float*)outputBuffers[0] + i) = (channelInput.X * dryGain + delayLineValues.X * outGain) / 64; *((float*)outputBuffers[1] + i) = (channelInput.Y * dryGain + delayLineValues.Y * outGain) / 64; *((float*)outputBuffers[2] + i) = (channelInput.Z * dryGain + delayLineValues.Z * outGain) / 64; *((float*)outputBuffers[3] + i) = (channelInput.W * dryGain + delayLineValues.W * outGain) / 64; *((float*)outputBuffers[4] + i) = (channelInput.V * dryGain + delayLineValues.V * outGain) / 64; *((float*)outputBuffers[5] + i) = (channelInput.U * dryGain + delayLineValues.U * outGain) / 64; } } private unsafe void ProcessDelay(CommandList context, ref DelayState state) { Debug.Assert(Parameter.IsChannelCountValid()); if (IsEffectEnabled && Parameter.IsChannelCountValid()) { Span inputBuffers = stackalloc IntPtr[Parameter.ChannelCount]; Span outputBuffers = stackalloc IntPtr[Parameter.ChannelCount]; for (int i = 0; i < Parameter.ChannelCount; i++) { inputBuffers[i] = context.GetBufferPointer(InputBufferIndices[i]); outputBuffers[i] = context.GetBufferPointer(OutputBufferIndices[i]); } switch (Parameter.ChannelCount) { case 1: ProcessDelayMono(ref state, (float*)outputBuffers[0], (float*)inputBuffers[0], context.SampleCount); break; case 2: ProcessDelayStereo(ref state, outputBuffers, inputBuffers, context.SampleCount); break; case 4: ProcessDelayQuadraphonic(ref state, outputBuffers, inputBuffers, context.SampleCount); break; case 6: ProcessDelaySurround(ref state, outputBuffers, inputBuffers, context.SampleCount); break; default: throw new NotImplementedException(Parameter.ChannelCount.ToString()); } } else { for (int i = 0; i < Parameter.ChannelCount; i++) { if (InputBufferIndices[i] != OutputBufferIndices[i]) { context.CopyBuffer(OutputBufferIndices[i], InputBufferIndices[i]); } } } } public void Process(CommandList context) { ref DelayState state = ref State.Span[0]; if (IsEffectEnabled) { if (Parameter.Status == UsageState.Invalid) { state = new DelayState(ref _parameter, WorkBuffer); } else if (Parameter.Status == UsageState.New) { state.UpdateParameter(ref _parameter); } } ProcessDelay(context, ref state); } } }