using System; using System.Collections.Generic; using System.Linq; namespace Ryujinx.Common.Collections { /// <summary> /// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges. /// </summary> /// <typeparam name="K">Key</typeparam> /// <typeparam name="V">Value</typeparam> public class IntervalTree<K, V> : IntrusiveRedBlackTreeImpl<IntervalTreeNode<K, V>> where K : IComparable<K> { private const int ArrayGrowthSize = 32; #region Public Methods /// <summary> /// Gets the values of the interval whose key is <paramref name="key"/>. /// </summary> /// <param name="key">Key of the node value to get</param> /// <param name="overlaps">Overlaps array to place results in</param> /// <returns>Number of values found</returns> /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception> public int Get(K key, ref V[] overlaps) { if (key == null) { throw new ArgumentNullException(nameof(key)); } IntervalTreeNode<K, V> node = GetNode(key); if (node == null) { return 0; } if (node.Values.Count > overlaps.Length) { Array.Resize(ref overlaps, node.Values.Count); } int overlapsCount = 0; foreach (RangeNode<K, V> value in node.Values) { overlaps[overlapsCount++] = value.Value; } return overlapsCount; } /// <summary> /// Returns the values of the intervals whose start and end keys overlap the given range. /// </summary> /// <param name="start">Start of the range</param> /// <param name="end">End of the range</param> /// <param name="overlaps">Overlaps array to place results in</param> /// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param> /// <returns>Number of values found</returns> /// <exception cref="ArgumentNullException"><paramref name="start"/> or <paramref name="end"/> is null</exception> public int Get(K start, K end, ref V[] overlaps, int overlapCount = 0) { if (start == null) { throw new ArgumentNullException(nameof(start)); } if (end == null) { throw new ArgumentNullException(nameof(end)); } GetValues(Root, start, end, ref overlaps, ref overlapCount); return overlapCount; } /// <summary> /// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>. /// </summary> /// <param name="start">Start of the range to add</param> /// <param name="end">End of the range to insert</param> /// <param name="value">Value to add</param> /// <exception cref="ArgumentNullException"><paramref name="start"/>, <paramref name="end"/> or <paramref name="value"/> are null</exception> public void Add(K start, K end, V value) { if (start == null) { throw new ArgumentNullException(nameof(start)); } if (end == null) { throw new ArgumentNullException(nameof(end)); } if (value == null) { throw new ArgumentNullException(nameof(value)); } Insert(start, end, value); } /// <summary> /// Removes the given <paramref name="value"/> from the tree, searching for it with <paramref name="key"/>. /// </summary> /// <param name="key">Key of the node to remove</param> /// <param name="value">Value to remove</param> /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception> /// <returns>Number of deleted values</returns> public int Remove(K key, V value) { if (key == null) { throw new ArgumentNullException(nameof(key)); } int removed = Delete(key, value); Count -= removed; return removed; } /// <summary> /// Adds all the nodes in the dictionary into <paramref name="list"/>. /// </summary> /// <returns>A list of all RangeNodes sorted by Key Order</returns> public List<RangeNode<K, V>> AsList() { List<RangeNode<K, V>> list = new List<RangeNode<K, V>>(); AddToList(Root, list); return list; } #endregion #region Private Methods (BST) /// <summary> /// Adds all RangeNodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order. /// </summary> /// <param name="node">The node to search for RangeNodes within</param> /// <param name="list">The list to add RangeNodes to</param> private void AddToList(IntervalTreeNode<K, V> node, List<RangeNode<K, V>> list) { if (node == null) { return; } AddToList(node.Left, list); list.AddRange(node.Values); AddToList(node.Right, list); } /// <summary> /// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists. /// </summary> /// <param name="key">Key of the node to get</param> /// <returns>Node reference in the tree</returns> /// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception> private IntervalTreeNode<K, V> GetNode(K key) { if (key == null) { throw new ArgumentNullException(nameof(key)); } IntervalTreeNode<K, V> node = Root; while (node != null) { int cmp = key.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { return node; } } return null; } /// <summary> /// Retrieve all values that overlap the given start and end keys. /// </summary> /// <param name="start">Start of the range</param> /// <param name="end">End of the range</param> /// <param name="overlaps">Overlaps array to place results in</param> /// <param name="overlapCount">Overlaps count to update</param> private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref V[] overlaps, ref int overlapCount) { if (node == null || start.CompareTo(node.Max) >= 0) { return; } GetValues(node.Left, start, end, ref overlaps, ref overlapCount); bool endsOnRight = end.CompareTo(node.Start) > 0; if (endsOnRight) { if (start.CompareTo(node.End) < 0) { // Contains this node. Add overlaps to list. foreach (RangeNode<K,V> overlap in node.Values) { if (start.CompareTo(overlap.End) < 0) { if (overlaps.Length >= overlapCount) { Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize); } overlaps[overlapCount++] = overlap.Value; } } } GetValues(node.Right, start, end, ref overlaps, ref overlapCount); } } /// <summary> /// Inserts a new node into the tree with a given <paramref name="start"/>, <paramref name="end"/> and <paramref name="value"/>. /// </summary> /// <param name="start">Start of the range to insert</param> /// <param name="end">End of the range to insert</param> /// <param name="value">Value to insert</param> private void Insert(K start, K end, V value) { IntervalTreeNode<K, V> newNode = BSTInsert(start, end, value); RestoreBalanceAfterInsertion(newNode); } /// <summary> /// Propagate an increase in max value starting at the given node, heading up the tree. /// This should only be called if the max increases - not for rebalancing or removals. /// </summary> /// <param name="node">The node to start propagating from</param> private void PropagateIncrease(IntervalTreeNode<K, V> node) { K max = node.Max; IntervalTreeNode<K, V> ptr = node; while ((ptr = ptr.Parent) != null) { if (max.CompareTo(ptr.Max) > 0) { ptr.Max = max; } else { break; } } } /// <summary> /// Propagate recalculating max value starting at the given node, heading up the tree. /// This fully recalculates the max value from all children when there is potential for it to decrease. /// </summary> /// <param name="node">The node to start propagating from</param> private void PropagateFull(IntervalTreeNode<K, V> node) { IntervalTreeNode<K, V> ptr = node; do { K max = ptr.End; if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0) { max = ptr.Left.Max; } if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0) { max = ptr.Right.Max; } ptr.Max = max; } while ((ptr = ptr.Parent) != null); } /// <summary> /// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key. /// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>. /// Each node can contain multiple values, and has an end address which is the maximum of all those values. /// Post insertion, the "max" value of the node and all parents are updated. /// </summary> /// <param name="start">Start of the range to insert</param> /// <param name="end">End of the range to insert</param> /// <param name="value">Value to insert</param> /// <returns>The inserted Node</returns> private IntervalTreeNode<K, V> BSTInsert(K start, K end, V value) { IntervalTreeNode<K, V> parent = null; IntervalTreeNode<K, V> node = Root; while (node != null) { parent = node; int cmp = start.CompareTo(node.Start); if (cmp < 0) { node = node.Left; } else if (cmp > 0) { node = node.Right; } else { node.Values.Add(new RangeNode<K, V>(start, end, value)); if (end.CompareTo(node.End) > 0) { node.End = end; if (end.CompareTo(node.Max) > 0) { node.Max = end; PropagateIncrease(node); } } Count++; return node; } } IntervalTreeNode<K, V> newNode = new IntervalTreeNode<K, V>(start, end, value, parent); if (newNode.Parent == null) { Root = newNode; } else if (start.CompareTo(parent.Start) < 0) { parent.Left = newNode; } else { parent.Right = newNode; } PropagateIncrease(newNode); Count++; return newNode; } /// <summary> /// Removes instances of <paramref name="value"> from the dictionary after searching for it with <paramref name="key">. /// </summary> /// <param name="key">Key to search for</param> /// <param name="value">Value to delete</param> /// <returns>Number of deleted values</returns> private int Delete(K key, V value) { IntervalTreeNode<K, V> nodeToDelete = GetNode(key); if (nodeToDelete == null) { return 0; } int removed = nodeToDelete.Values.RemoveAll(node => node.Value.Equals(value)); if (nodeToDelete.Values.Count > 0) { if (removed > 0) { nodeToDelete.End = nodeToDelete.Values.Max(node => node.End); // Recalculate max from children and new end. PropagateFull(nodeToDelete); } return removed; } IntervalTreeNode<K, V> replacementNode; if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null) { replacementNode = nodeToDelete; } else { replacementNode = PredecessorOf(nodeToDelete); } IntervalTreeNode<K, V> tmp = LeftOf(replacementNode) ?? RightOf(replacementNode); if (tmp != null) { tmp.Parent = ParentOf(replacementNode); } if (ParentOf(replacementNode) == null) { Root = tmp; } else if (replacementNode == LeftOf(ParentOf(replacementNode))) { ParentOf(replacementNode).Left = tmp; } else { ParentOf(replacementNode).Right = tmp; } if (replacementNode != nodeToDelete) { nodeToDelete.Start = replacementNode.Start; nodeToDelete.Values = replacementNode.Values; nodeToDelete.End = replacementNode.End; nodeToDelete.Max = replacementNode.Max; } PropagateFull(replacementNode); if (tmp != null && ColorOf(replacementNode) == Black) { RestoreBalanceAfterRemoval(tmp); } return removed; } #endregion protected override void RotateLeft(IntervalTreeNode<K, V> node) { if (node != null) { base.RotateLeft(node); PropagateFull(node); } } protected override void RotateRight(IntervalTreeNode<K, V> node) { if (node != null) { base.RotateRight(node); PropagateFull(node); } } public bool ContainsKey(K key) { if (key == null) { throw new ArgumentNullException(nameof(key)); } return GetNode(key) != null; } } /// <summary> /// Represents a value and its start and end keys. /// </summary> /// <typeparam name="K"></typeparam> /// <typeparam name="V"></typeparam> public readonly struct RangeNode<K, V> { public readonly K Start; public readonly K End; public readonly V Value; public RangeNode(K start, K end, V value) { Start = start; End = end; Value = value; } } /// <summary> /// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V. /// </summary> /// <typeparam name="K">Key type of the node</typeparam> /// <typeparam name="V">Value type of the node</typeparam> public class IntervalTreeNode<K, V> : IntrusiveRedBlackTreeNode<IntervalTreeNode<K, V>> { /// <summary> /// The start of the range. /// </summary> internal K Start; /// <summary> /// The end of the range - maximum of all in the Values list. /// </summary> internal K End; /// <summary> /// The maximum end value of this node and all its children. /// </summary> internal K Max; /// <summary> /// Values contained on the node that shares a common Start value. /// </summary> internal List<RangeNode<K, V>> Values; internal IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent) { Start = start; End = end; Max = end; Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) }; Parent = parent; } } }