using ARMeilleure.CodeGen.Linking; using ARMeilleure.Common; using ARMeilleure.Decoders; using ARMeilleure.Diagnostics; using ARMeilleure.Instructions; using ARMeilleure.IntermediateRepresentation; using ARMeilleure.Memory; using ARMeilleure.State; using System; using System.Collections.Generic; using System.Reflection; using static ARMeilleure.IntermediateRepresentation.Operand.Factory; namespace ARMeilleure.Translation { class ArmEmitterContext : EmitterContext { private readonly Dictionary<ulong, Operand> _labels; private OpCode _optOpLastCompare; private OpCode _optOpLastFlagSet; private Operand _optCmpTempN; private Operand _optCmpTempM; private Block _currBlock; public Block CurrBlock { get { return _currBlock; } set { _currBlock = value; ResetBlockState(); } } private bool _pendingQcFlagSync; public OpCode CurrOp { get; set; } public IMemoryManager Memory { get; } public EntryTable<uint> CountTable { get; } public AddressTable<ulong> FunctionTable { get; } public TranslatorStubs Stubs { get; } public ulong EntryAddress { get; } public bool HighCq { get; } public bool HasPtc { get; } public Aarch32Mode Mode { get; } private int _ifThenBlockStateIndex = 0; private Condition[] _ifThenBlockState = { }; public bool IsInIfThenBlock => _ifThenBlockStateIndex < _ifThenBlockState.Length; public Condition CurrentIfThenBlockCond => _ifThenBlockState[_ifThenBlockStateIndex]; public ArmEmitterContext( IMemoryManager memory, EntryTable<uint> countTable, AddressTable<ulong> funcTable, TranslatorStubs stubs, ulong entryAddress, bool highCq, bool hasPtc, Aarch32Mode mode) { Memory = memory; CountTable = countTable; FunctionTable = funcTable; Stubs = stubs; EntryAddress = entryAddress; HighCq = highCq; HasPtc = hasPtc; Mode = mode; _labels = new Dictionary<ulong, Operand>(); } public override Operand Call(MethodInfo info, params Operand[] callArgs) { SyncQcFlag(); if (!HasPtc) { return base.Call(info, callArgs); } else { int index = Delegates.GetDelegateIndex(info); IntPtr funcPtr = Delegates.GetDelegateFuncPtrByIndex(index); OperandType returnType = GetOperandType(info.ReturnType); Symbol symbol = new Symbol(SymbolType.DelegateTable, (ulong)index); Symbols.Add((ulong)funcPtr.ToInt64(), info.Name); return Call(Const(funcPtr.ToInt64(), symbol), returnType, callArgs); } } public Operand GetLabel(ulong address) { if (!_labels.TryGetValue(address, out Operand label)) { label = Label(); _labels.Add(address, label); } return label; } public void MarkComparison(Operand n, Operand m) { _optOpLastCompare = CurrOp; _optCmpTempN = Copy(n); _optCmpTempM = Copy(m); } public void MarkFlagSet(PState stateFlag) { // Set this only if any of the NZCV flag bits were modified. // This is used to ensure that when emiting a direct IL branch // instruction for compare + branch sequences, we're not expecting // to use comparison values from an old instruction, when in fact // the flags were already overwritten by another instruction further along. if (stateFlag >= PState.VFlag) { _optOpLastFlagSet = CurrOp; } } private void ResetBlockState() { _optOpLastCompare = null; _optOpLastFlagSet = null; } public void SetPendingQcFlagSync() { _pendingQcFlagSync = true; } public void SyncQcFlag() { if (_pendingQcFlagSync) { if (Optimizations.UseAdvSimd) { Operand fpsr = AddIntrinsicInt(Intrinsic.Arm64MrsFpsr); uint qcFlagMask = (uint)FPSR.Qc; Operand qcClearLabel = Label(); BranchIfFalse(qcClearLabel, BitwiseAnd(fpsr, Const(qcFlagMask))); AddIntrinsicNoRet(Intrinsic.Arm64MsrFpsr, Const(0)); InstEmitHelper.SetFpFlag(this, FPState.QcFlag, Const(1)); MarkLabel(qcClearLabel); } _pendingQcFlagSync = false; } } public void ClearQcFlag() { if (Optimizations.UseAdvSimd) { AddIntrinsicNoRet(Intrinsic.Arm64MsrFpsr, Const(0)); } } public void ClearQcFlagIfModified() { if (_pendingQcFlagSync && Optimizations.UseAdvSimd) { AddIntrinsicNoRet(Intrinsic.Arm64MsrFpsr, Const(0)); } } public Operand TryGetComparisonResult(Condition condition) { if (_optOpLastCompare == null || _optOpLastCompare != _optOpLastFlagSet) { return default; } Operand n = _optCmpTempN; Operand m = _optCmpTempM; InstName cmpName = _optOpLastCompare.Instruction.Name; if (cmpName == InstName.Subs) { switch (condition) { case Condition.Eq: return ICompareEqual (n, m); case Condition.Ne: return ICompareNotEqual (n, m); case Condition.GeUn: return ICompareGreaterOrEqualUI(n, m); case Condition.LtUn: return ICompareLessUI (n, m); case Condition.GtUn: return ICompareGreaterUI (n, m); case Condition.LeUn: return ICompareLessOrEqualUI (n, m); case Condition.Ge: return ICompareGreaterOrEqual (n, m); case Condition.Lt: return ICompareLess (n, m); case Condition.Gt: return ICompareGreater (n, m); case Condition.Le: return ICompareLessOrEqual (n, m); } } else if (cmpName == InstName.Adds && _optOpLastCompare is IOpCodeAluImm op) { // There are several limitations that needs to be taken into account for CMN comparisons: // - The unsigned comparisons are not valid, as they depend on the // carry flag value, and they will have different values for addition and // subtraction. For addition, it's carry, and for subtraction, it's borrow. // So, we need to make sure we're not doing a unsigned compare for the CMN case. // - We can only do the optimization for the immediate variants, // because when the second operand value is exactly INT_MIN, we can't // negate the value as theres no positive counterpart. // Such invalid values can't be encoded on the immediate encodings. if (op.RegisterSize == RegisterSize.Int32) { m = Const((int)-op.Immediate); } else { m = Const(-op.Immediate); } switch (condition) { case Condition.Eq: return ICompareEqual (n, m); case Condition.Ne: return ICompareNotEqual (n, m); case Condition.Ge: return ICompareGreaterOrEqual(n, m); case Condition.Lt: return ICompareLess (n, m); case Condition.Gt: return ICompareGreater (n, m); case Condition.Le: return ICompareLessOrEqual (n, m); } } return default; } public void SetIfThenBlockState(Condition[] state) { _ifThenBlockState = state; _ifThenBlockStateIndex = 0; } public void AdvanceIfThenBlockState() { if (IsInIfThenBlock) { _ifThenBlockStateIndex++; } } } }