diff options
Diffstat (limited to 'src/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs')
-rw-r--r-- | src/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs | 413 |
1 files changed, 413 insertions, 0 deletions
diff --git a/src/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs b/src/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs new file mode 100644 index 00000000..bd33383e --- /dev/null +++ b/src/Ryujinx.Graphics.Gpu/Memory/PhysicalMemory.cs @@ -0,0 +1,413 @@ +using Ryujinx.Cpu; +using Ryujinx.Cpu.Tracking; +using Ryujinx.Graphics.Gpu.Image; +using Ryujinx.Graphics.Gpu.Shader; +using Ryujinx.Memory; +using Ryujinx.Memory.Range; +using Ryujinx.Memory.Tracking; +using System; +using System.Collections.Generic; +using System.Runtime.InteropServices; +using System.Threading; + +namespace Ryujinx.Graphics.Gpu.Memory +{ + /// <summary> + /// Represents physical memory, accessible from the GPU. + /// This is actually working CPU virtual addresses, of memory mapped on the application process. + /// </summary> + class PhysicalMemory : IDisposable + { + private readonly GpuContext _context; + private IVirtualMemoryManagerTracked _cpuMemory; + private int _referenceCount; + + /// <summary> + /// Indicates whenever the memory manager supports 4KB pages. + /// </summary> + public bool Supports4KBPages => _cpuMemory.Supports4KBPages; + + /// <summary> + /// In-memory shader cache. + /// </summary> + public ShaderCache ShaderCache { get; } + + /// <summary> + /// GPU buffer manager. + /// </summary> + public BufferCache BufferCache { get; } + + /// <summary> + /// GPU texture manager. + /// </summary> + public TextureCache TextureCache { get; } + + /// <summary> + /// Creates a new instance of the physical memory. + /// </summary> + /// <param name="context">GPU context that the physical memory belongs to</param> + /// <param name="cpuMemory">CPU memory manager of the application process</param> + public PhysicalMemory(GpuContext context, IVirtualMemoryManagerTracked cpuMemory) + { + _context = context; + _cpuMemory = cpuMemory; + ShaderCache = new ShaderCache(context); + BufferCache = new BufferCache(context, this); + TextureCache = new TextureCache(context, this); + + if (cpuMemory is IRefCounted rc) + { + rc.IncrementReferenceCount(); + } + + _referenceCount = 1; + } + + /// <summary> + /// Increments the memory reference count. + /// </summary> + public void IncrementReferenceCount() + { + Interlocked.Increment(ref _referenceCount); + } + + /// <summary> + /// Decrements the memory reference count. + /// </summary> + public void DecrementReferenceCount() + { + if (Interlocked.Decrement(ref _referenceCount) == 0 && _cpuMemory is IRefCounted rc) + { + rc.DecrementReferenceCount(); + } + } + + /// <summary> + /// Gets a span of data from the application process. + /// </summary> + /// <param name="address">Start address of the range</param> + /// <param name="size">Size in bytes to be range</param> + /// <param name="tracked">True if read tracking is triggered on the span</param> + /// <returns>A read only span of the data at the specified memory location</returns> + public ReadOnlySpan<byte> GetSpan(ulong address, int size, bool tracked = false) + { + return _cpuMemory.GetSpan(address, size, tracked); + } + + /// <summary> + /// Gets a span of data from the application process. + /// </summary> + /// <param name="range">Ranges of physical memory where the data is located</param> + /// <param name="tracked">True if read tracking is triggered on the span</param> + /// <returns>A read only span of the data at the specified memory location</returns> + public ReadOnlySpan<byte> GetSpan(MultiRange range, bool tracked = false) + { + if (range.Count == 1) + { + var singleRange = range.GetSubRange(0); + if (singleRange.Address != MemoryManager.PteUnmapped) + { + return _cpuMemory.GetSpan(singleRange.Address, (int)singleRange.Size, tracked); + } + } + + Span<byte> data = new byte[range.GetSize()]; + + int offset = 0; + + for (int i = 0; i < range.Count; i++) + { + var currentRange = range.GetSubRange(i); + int size = (int)currentRange.Size; + if (currentRange.Address != MemoryManager.PteUnmapped) + { + _cpuMemory.GetSpan(currentRange.Address, size, tracked).CopyTo(data.Slice(offset, size)); + } + offset += size; + } + + return data; + } + + /// <summary> + /// Gets a writable region from the application process. + /// </summary> + /// <param name="address">Start address of the range</param> + /// <param name="size">Size in bytes to be range</param> + /// <param name="tracked">True if write tracking is triggered on the span</param> + /// <returns>A writable region with the data at the specified memory location</returns> + public WritableRegion GetWritableRegion(ulong address, int size, bool tracked = false) + { + return _cpuMemory.GetWritableRegion(address, size, tracked); + } + + /// <summary> + /// Gets a writable region from GPU mapped memory. + /// </summary> + /// <param name="range">Range</param> + /// <param name="tracked">True if write tracking is triggered on the span</param> + /// <returns>A writable region with the data at the specified memory location</returns> + public WritableRegion GetWritableRegion(MultiRange range, bool tracked = false) + { + if (range.Count == 1) + { + MemoryRange subrange = range.GetSubRange(0); + + return GetWritableRegion(subrange.Address, (int)subrange.Size, tracked); + } + else + { + Memory<byte> memory = new byte[range.GetSize()]; + + int offset = 0; + for (int i = 0; i < range.Count; i++) + { + var currentRange = range.GetSubRange(i); + int size = (int)currentRange.Size; + if (currentRange.Address != MemoryManager.PteUnmapped) + { + GetSpan(currentRange.Address, size).CopyTo(memory.Span.Slice(offset, size)); + } + offset += size; + } + + return new WritableRegion(new MultiRangeWritableBlock(range, this), 0, memory, tracked); + } + } + + /// <summary> + /// Reads data from the application process. + /// </summary> + /// <typeparam name="T">Type of the structure</typeparam> + /// <param name="address">Address to read from</param> + /// <returns>The data at the specified memory location</returns> + public T Read<T>(ulong address) where T : unmanaged + { + return _cpuMemory.Read<T>(address); + } + + /// <summary> + /// Reads data from the application process, with write tracking. + /// </summary> + /// <typeparam name="T">Type of the structure</typeparam> + /// <param name="address">Address to read from</param> + /// <returns>The data at the specified memory location</returns> + public T ReadTracked<T>(ulong address) where T : unmanaged + { + return _cpuMemory.ReadTracked<T>(address); + } + + /// <summary> + /// Writes data to the application process, triggering a precise memory tracking event. + /// </summary> + /// <param name="address">Address to write into</param> + /// <param name="data">Data to be written</param> + public void WriteTrackedResource(ulong address, ReadOnlySpan<byte> data) + { + _cpuMemory.SignalMemoryTracking(address, (ulong)data.Length, true, precise: true); + _cpuMemory.WriteUntracked(address, data); + } + + /// <summary> + /// Writes data to the application process. + /// </summary> + /// <param name="address">Address to write into</param> + /// <param name="data">Data to be written</param> + public void Write(ulong address, ReadOnlySpan<byte> data) + { + _cpuMemory.Write(address, data); + } + + /// <summary> + /// Writes data to the application process. + /// </summary> + /// <param name="range">Ranges of physical memory where the data is located</param> + /// <param name="data">Data to be written</param> + public void Write(MultiRange range, ReadOnlySpan<byte> data) + { + WriteImpl(range, data, _cpuMemory.Write); + } + + /// <summary> + /// Writes data to the application process, without any tracking. + /// </summary> + /// <param name="address">Address to write into</param> + /// <param name="data">Data to be written</param> + public void WriteUntracked(ulong address, ReadOnlySpan<byte> data) + { + _cpuMemory.WriteUntracked(address, data); + } + + /// <summary> + /// Writes data to the application process, without any tracking. + /// </summary> + /// <param name="range">Ranges of physical memory where the data is located</param> + /// <param name="data">Data to be written</param> + public void WriteUntracked(MultiRange range, ReadOnlySpan<byte> data) + { + WriteImpl(range, data, _cpuMemory.WriteUntracked); + } + + /// <summary> + /// Writes data to the application process, returning false if the data was not changed. + /// This triggers read memory tracking, as a redundancy check would be useless if the data is not up to date. + /// </summary> + /// <remarks>The memory manager can return that memory has changed when it hasn't to avoid expensive data copies.</remarks> + /// <param name="address">Address to write into</param> + /// <param name="data">Data to be written</param> + /// <returns>True if the data was changed, false otherwise</returns> + public bool WriteWithRedundancyCheck(ulong address, ReadOnlySpan<byte> data) + { + return _cpuMemory.WriteWithRedundancyCheck(address, data); + } + + private delegate void WriteCallback(ulong address, ReadOnlySpan<byte> data); + + /// <summary> + /// Writes data to the application process, using the supplied callback method. + /// </summary> + /// <param name="range">Ranges of physical memory where the data is located</param> + /// <param name="data">Data to be written</param> + /// <param name="writeCallback">Callback method that will perform the write</param> + private static void WriteImpl(MultiRange range, ReadOnlySpan<byte> data, WriteCallback writeCallback) + { + if (range.Count == 1) + { + var singleRange = range.GetSubRange(0); + if (singleRange.Address != MemoryManager.PteUnmapped) + { + writeCallback(singleRange.Address, data); + } + } + else + { + int offset = 0; + + for (int i = 0; i < range.Count; i++) + { + var currentRange = range.GetSubRange(i); + int size = (int)currentRange.Size; + if (currentRange.Address != MemoryManager.PteUnmapped) + { + writeCallback(currentRange.Address, data.Slice(offset, size)); + } + offset += size; + } + } + } + + /// <summary> + /// Fills the specified memory region with a 32-bit integer value. + /// </summary> + /// <param name="address">CPU virtual address of the region</param> + /// <param name="size">Size of the region</param> + /// <param name="value">Value to fill the region with</param> + /// <param name="kind">Kind of the resource being filled, which will not be signalled as CPU modified</param> + public void FillTrackedResource(ulong address, ulong size, uint value, ResourceKind kind) + { + _cpuMemory.SignalMemoryTracking(address, size, write: true, precise: true, (int)kind); + + using WritableRegion region = _cpuMemory.GetWritableRegion(address, (int)size); + + MemoryMarshal.Cast<byte, uint>(region.Memory.Span).Fill(value); + } + + /// <summary> + /// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with. + /// </summary> + /// <param name="address">CPU virtual address of the region</param> + /// <param name="size">Size of the region</param> + /// <param name="kind">Kind of the resource being tracked</param> + /// <returns>The memory tracking handle</returns> + public CpuRegionHandle BeginTracking(ulong address, ulong size, ResourceKind kind) + { + return _cpuMemory.BeginTracking(address, size, (int)kind); + } + + /// <summary> + /// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with. + /// </summary> + /// <param name="range">Ranges of physical memory where the data is located</param> + /// <param name="kind">Kind of the resource being tracked</param> + /// <returns>The memory tracking handle</returns> + public GpuRegionHandle BeginTracking(MultiRange range, ResourceKind kind) + { + var cpuRegionHandles = new CpuRegionHandle[range.Count]; + int count = 0; + + for (int i = 0; i < range.Count; i++) + { + var currentRange = range.GetSubRange(i); + if (currentRange.Address != MemoryManager.PteUnmapped) + { + cpuRegionHandles[count++] = _cpuMemory.BeginTracking(currentRange.Address, currentRange.Size, (int)kind); + } + } + + if (count != range.Count) + { + Array.Resize(ref cpuRegionHandles, count); + } + + return new GpuRegionHandle(cpuRegionHandles); + } + + /// <summary> + /// Obtains a memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. + /// </summary> + /// <param name="address">CPU virtual address of the region</param> + /// <param name="size">Size of the region</param> + /// <param name="kind">Kind of the resource being tracked</param> + /// <param name="handles">Handles to inherit state from or reuse</param> + /// <param name="granularity">Desired granularity of write tracking</param> + /// <returns>The memory tracking handle</returns> + public CpuMultiRegionHandle BeginGranularTracking(ulong address, ulong size, ResourceKind kind, IEnumerable<IRegionHandle> handles = null, ulong granularity = 4096) + { + return _cpuMemory.BeginGranularTracking(address, size, handles, granularity, (int)kind); + } + + /// <summary> + /// Obtains a smart memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. + /// </summary> + /// <param name="address">CPU virtual address of the region</param> + /// <param name="size">Size of the region</param> + /// <param name="kind">Kind of the resource being tracked</param> + /// <param name="granularity">Desired granularity of write tracking</param> + /// <returns>The memory tracking handle</returns> + public CpuSmartMultiRegionHandle BeginSmartGranularTracking(ulong address, ulong size, ResourceKind kind, ulong granularity = 4096) + { + return _cpuMemory.BeginSmartGranularTracking(address, size, granularity, (int)kind); + } + + /// <summary> + /// Checks if a given memory page is mapped. + /// </summary> + /// <param name="address">CPU virtual address of the page</param> + /// <returns>True if mapped, false otherwise</returns> + public bool IsMapped(ulong address) + { + return _cpuMemory.IsMapped(address); + } + + /// <summary> + /// Release our reference to the CPU memory manager. + /// </summary> + public void Dispose() + { + _context.DeferredActions.Enqueue(Destroy); + } + + /// <summary> + /// Performs disposal of the host GPU caches with resources mapped on this physical memory. + /// This must only be called from the render thread. + /// </summary> + private void Destroy() + { + ShaderCache.Dispose(); + BufferCache.Dispose(); + TextureCache.Dispose(); + + DecrementReferenceCount(); + } + } +}
\ No newline at end of file |