// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include #include #include #include #include "common/common_types.h" #include "common/memory_ref.h" namespace Kernel { class Process; } namespace Core { class System; } namespace AudioCore { class DspInterface; } namespace Memory { /** * Page size used by the ARM architecture. This is the smallest granularity with which memory can * be mapped. */ constexpr u32 CITRA_PAGE_SIZE = 0x1000; constexpr u32 CITRA_PAGE_MASK = CITRA_PAGE_SIZE - 1; constexpr int CITRA_PAGE_BITS = 12; constexpr std::size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - CITRA_PAGE_BITS); enum class PageType { /// Page is unmapped and should cause an access error. Unmapped, /// Page is mapped to regular memory. This is the only type you can get pointers to. Memory, /// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and /// invalidation RasterizerCachedMemory, }; /** * A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely * mimics the way a real CPU page table works, but instead is optimized for minimal decoding and * fetching requirements when accessing. In the usual case of an access to regular memory, it only * requires an indexed fetch and a check for NULL. */ struct PageTable { /** * Array of memory pointers backing each page. An entry can only be non-null if the * corresponding entry in the `attributes` array is of type `Memory`. */ // The reason for this rigmarole is to keep the 'raw' and 'refs' arrays in sync. // We need 'raw' for dynarmic and 'refs' for serialization struct Pointers { struct Entry { Entry(Pointers& pointers_, VAddr idx_) : pointers(pointers_), idx(idx_) {} Entry& operator=(MemoryRef value) { pointers.raw[idx] = value.GetPtr(); pointers.refs[idx] = std::move(value); return *this; } operator u8*() { return pointers.raw[idx]; } private: Pointers& pointers; VAddr idx; }; Entry operator[](std::size_t idx) { return Entry(*this, static_cast(idx)); } private: std::array raw; std::array refs; friend struct PageTable; }; Pointers pointers; /** * Array of fine grained page attributes. If it is set to any value other than `Memory`, then * the corresponding entry in `pointers` MUST be set to null. */ std::array attributes; std::array& GetPointerArray() { return pointers.raw; } void Clear(); private: template void serialize(Archive& ar, const unsigned int) { ar& pointers.refs; ar& attributes; for (std::size_t i = 0; i < PAGE_TABLE_NUM_ENTRIES; i++) { pointers.raw[i] = pointers.refs[i].GetPtr(); } } friend class boost::serialization::access; }; /// Physical memory regions as seen from the ARM11 enum : PAddr { /// IO register area IO_AREA_PADDR = 0x10100000, IO_AREA_SIZE = 0x00400000, ///< IO area size (4MB) IO_AREA_PADDR_END = IO_AREA_PADDR + IO_AREA_SIZE, /// MPCore internal memory region MPCORE_RAM_PADDR = 0x17E00000, MPCORE_RAM_SIZE = 0x00002000, ///< MPCore internal memory size (8KB) MPCORE_RAM_PADDR_END = MPCORE_RAM_PADDR + MPCORE_RAM_SIZE, /// Video memory VRAM_PADDR = 0x18000000, VRAM_SIZE = 0x00600000, ///< VRAM size (6MB) VRAM_PADDR_END = VRAM_PADDR + VRAM_SIZE, /// New 3DS additional memory. Supposedly faster than regular FCRAM. Part of it can be used by /// applications and system modules if mapped via the ExHeader. N3DS_EXTRA_RAM_PADDR = 0x1F000000, N3DS_EXTRA_RAM_SIZE = 0x00400000, ///< New 3DS additional memory size (4MB) N3DS_EXTRA_RAM_PADDR_END = N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_SIZE, /// DSP memory DSP_RAM_PADDR = 0x1FF00000, DSP_RAM_SIZE = 0x00080000, ///< DSP memory size (512KB) DSP_RAM_PADDR_END = DSP_RAM_PADDR + DSP_RAM_SIZE, /// AXI WRAM AXI_WRAM_PADDR = 0x1FF80000, AXI_WRAM_SIZE = 0x00080000, ///< AXI WRAM size (512KB) AXI_WRAM_PADDR_END = AXI_WRAM_PADDR + AXI_WRAM_SIZE, /// Main FCRAM FCRAM_PADDR = 0x20000000, FCRAM_SIZE = 0x08000000, ///< FCRAM size on the Old 3DS (128MB) FCRAM_N3DS_SIZE = 0x10000000, ///< FCRAM size on the New 3DS (256MB) FCRAM_PADDR_END = FCRAM_PADDR + FCRAM_SIZE, FCRAM_N3DS_PADDR_END = FCRAM_PADDR + FCRAM_N3DS_SIZE, }; enum class Region { FCRAM, VRAM, DSP, N3DS }; /// Virtual user-space memory regions enum : VAddr { /// Where the application text, data and bss reside. PROCESS_IMAGE_VADDR = 0x00100000, PROCESS_IMAGE_MAX_SIZE = 0x03F00000, PROCESS_IMAGE_VADDR_END = PROCESS_IMAGE_VADDR + PROCESS_IMAGE_MAX_SIZE, /// Area where IPC buffers are mapped onto. IPC_MAPPING_VADDR = 0x04000000, IPC_MAPPING_SIZE = 0x04000000, IPC_MAPPING_VADDR_END = IPC_MAPPING_VADDR + IPC_MAPPING_SIZE, /// Application heap (includes stack). HEAP_VADDR = 0x08000000, HEAP_SIZE = 0x08000000, HEAP_VADDR_END = HEAP_VADDR + HEAP_SIZE, /// Area where shared memory buffers are mapped onto. SHARED_MEMORY_VADDR = 0x10000000, SHARED_MEMORY_SIZE = 0x04000000, SHARED_MEMORY_VADDR_END = SHARED_MEMORY_VADDR + SHARED_MEMORY_SIZE, /// Maps 1:1 to an offset in FCRAM. Used for HW allocations that need to be linear in physical /// memory. LINEAR_HEAP_VADDR = 0x14000000, LINEAR_HEAP_SIZE = 0x08000000, LINEAR_HEAP_VADDR_END = LINEAR_HEAP_VADDR + LINEAR_HEAP_SIZE, /// Maps 1:1 to New 3DS additional memory N3DS_EXTRA_RAM_VADDR = 0x1E800000, N3DS_EXTRA_RAM_VADDR_END = N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_SIZE, /// Maps 1:1 to the IO register area. IO_AREA_VADDR = 0x1EC00000, IO_AREA_VADDR_END = IO_AREA_VADDR + IO_AREA_SIZE, /// Maps 1:1 to VRAM. VRAM_VADDR = 0x1F000000, VRAM_VADDR_END = VRAM_VADDR + VRAM_SIZE, /// Maps 1:1 to DSP memory. DSP_RAM_VADDR = 0x1FF00000, DSP_RAM_VADDR_END = DSP_RAM_VADDR + DSP_RAM_SIZE, /// Read-only page containing kernel and system configuration values. CONFIG_MEMORY_VADDR = 0x1FF80000, CONFIG_MEMORY_SIZE = 0x00001000, CONFIG_MEMORY_VADDR_END = CONFIG_MEMORY_VADDR + CONFIG_MEMORY_SIZE, /// Usually read-only page containing mostly values read from hardware. SHARED_PAGE_VADDR = 0x1FF81000, SHARED_PAGE_SIZE = 0x00001000, SHARED_PAGE_VADDR_END = SHARED_PAGE_VADDR + SHARED_PAGE_SIZE, /// Area where TLS (Thread-Local Storage) buffers are allocated. TLS_AREA_VADDR = 0x1FF82000, TLS_ENTRY_SIZE = 0x200, /// Equivalent to LINEAR_HEAP_VADDR, but expanded to cover the extra memory in the New 3DS. NEW_LINEAR_HEAP_VADDR = 0x30000000, NEW_LINEAR_HEAP_SIZE = 0x10000000, NEW_LINEAR_HEAP_VADDR_END = NEW_LINEAR_HEAP_VADDR + NEW_LINEAR_HEAP_SIZE, /// Area where 3GX plugin framebuffers are stored PLUGIN_3GX_FB_VADDR = 0x06000000, PLUGIN_3GX_FB_SIZE = 0x000A9000, PLUGIN_3GX_FB_VADDR_END = PLUGIN_3GX_FB_VADDR + PLUGIN_3GX_FB_SIZE }; enum class FlushMode { /// Write back modified surfaces to RAM Flush, /// Remove region from the cache Invalidate, /// Write back modified surfaces to RAM, and also remove them from the cache FlushAndInvalidate, }; class MemorySystem { public: explicit MemorySystem(Core::System& system); ~MemorySystem(); /** * Maps an allocated buffer onto a region of the emulated process address space. * * @param page_table The page table of the emulated process. * @param base The address to start mapping at. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned. * @param target Buffer with the memory backing the mapping. Must be of length at least `size`. */ void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target); void UnmapRegion(PageTable& page_table, VAddr base, u32 size); /// Currently active page table void SetCurrentPageTable(std::shared_ptr page_table); std::shared_ptr GetCurrentPageTable() const; /** * Gets a pointer to the given address. * * @param vaddr Virtual address to retrieve a pointer to. * * @returns The pointer to the given address, if the address is valid. * If the address is not valid, nullptr will be returned. */ u8* GetPointer(VAddr vaddr); /** * Gets a pointer to the given address. * * @param vaddr Virtual address to retrieve a pointer to. * * @returns The pointer to the given address, if the address is valid. * If the address is not valid, nullptr will be returned. */ const u8* GetPointer(VAddr vaddr) const; /** * Reads an 8-bit unsigned value from the current process' address space * at the given virtual address. * * @param addr The virtual address to read the 8-bit value from. * * @returns the read 8-bit unsigned value. */ u8 Read8(VAddr addr); /** * Reads a 16-bit unsigned value from the current process' address space * at the given virtual address. * * @param addr The virtual address to read the 16-bit value from. * * @returns the read 16-bit unsigned value. */ u16 Read16(VAddr addr); /** * Reads a 32-bit unsigned value from the current process' address space * at the given virtual address. * * @param addr The virtual address to read the 32-bit value from. * * @returns the read 32-bit unsigned value. */ u32 Read32(VAddr addr); /** * Reads a 64-bit unsigned value from the current process' address space * at the given virtual address. * * @param addr The virtual address to read the 64-bit value from. * * @returns the read 64-bit value. */ u64 Read64(VAddr addr); /** * Writes an 8-bit unsigned integer to the given virtual address in * the current process' address space. * * @param addr The virtual address to write the 8-bit unsigned integer to. * @param data The 8-bit unsigned integer to write to the given virtual address. * * @post The memory at the given virtual address contains the specified data value. */ void Write8(VAddr addr, u8 data); /** * Writes a 16-bit unsigned integer to the given virtual address in * the current process' address space. * * @param addr The virtual address to write the 16-bit unsigned integer to. * @param data The 16-bit unsigned integer to write to the given virtual address. * * @post The memory range [addr, sizeof(data)) contains the given data value. */ void Write16(VAddr addr, u16 data); /** * Writes a 32-bit unsigned integer to the given virtual address in * the current process' address space. * * @param addr The virtual address to write the 32-bit unsigned integer to. * @param data The 32-bit unsigned integer to write to the given virtual address. * * @post The memory range [addr, sizeof(data)) contains the given data value. */ void Write32(VAddr addr, u32 data); /** * Writes a 64-bit unsigned integer to the given virtual address in * the current process' address space. * * @param addr The virtual address to write the 64-bit unsigned integer to. * @param data The 64-bit unsigned integer to write to the given virtual address. * * @post The memory range [addr, sizeof(data)) contains the given data value. */ void Write64(VAddr addr, u64 data); /** * Writes a {8, 16, 32, 64}-bit unsigned integer to the given virtual address in * the current process' address space if and only if the address contains * the expected value. This operation is atomic. * * @param addr The virtual address to write the X-bit unsigned integer to. * @param data The X-bit unsigned integer to write to the given virtual address. * @param expected The X-bit unsigned integer to check against the given virtual address. * @returns true if the operation failed * * @post The memory range [addr, sizeof(data)) contains the given data value. */ bool WriteExclusive8(const VAddr addr, const u8 data, const u8 expected); bool WriteExclusive16(const VAddr addr, const u16 data, const u16 expected); bool WriteExclusive32(const VAddr addr, const u32 data, const u32 expected); bool WriteExclusive64(const VAddr addr, const u64 data, const u64 expected); /** * Reads a null-terminated string from the given virtual address. * This function will continually read characters until either: * * - A null character ('\0') is reached. * - max_length characters have been read. * * @note The final null-terminating character (if found) is not included * in the returned string. * * @param vaddr The address to begin reading the string from. * @param max_length The maximum length of the string to read in characters. * * @returns The read string. */ std::string ReadCString(VAddr vaddr, std::size_t max_length); /** * Reads a contiguous block of bytes from a specified process' address space. * * @param process The process to read the data from. * @param src_addr The virtual address to begin reading from. * @param dest_buffer The buffer to place the read bytes into. * @param size The amount of data to read, in bytes. * * @note If a size of 0 is specified, then this function reads nothing and * no attempts to access memory are made at all. * * @pre dest_buffer must be at least size bytes in length, otherwise a * buffer overrun will occur. * * @post The range [dest_buffer, size) contains the read bytes from the * process' address space. */ void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer, std::size_t size); /** * Reads a contiguous block of bytes from the current process' address space. * * @param src_addr The virtual address to begin reading from. * @param dest_buffer The buffer to place the read bytes into. * @param size The amount of data to read, in bytes. * * @note If a size of 0 is specified, then this function reads nothing and * no attempts to access memory are made at all. * * @pre dest_buffer must be at least size bytes in length, otherwise a * buffer overrun will occur. * * @post The range [dest_buffer, size) contains the read bytes from the * current process' address space. */ void ReadBlock(VAddr src_addr, void* dest_buffer, std::size_t size); /** * Writes a range of bytes into a given process' address space at the specified * virtual address. * * @param process The process to write data into the address space of. * @param dest_addr The destination virtual address to begin writing the data at. * @param src_buffer The data to write into the process' address space. * @param size The size of the data to write, in bytes. * * @post The address range [dest_addr, size) in the process' address space * contains the data that was within src_buffer. * * @post If an attempt is made to write into an unmapped region of memory, the writes * will be ignored and an error will be logged. * * @post If a write is performed into a region of memory that is considered cached * rasterizer memory, will cause the currently active rasterizer to be notified * and will mark that region as invalidated to caches that the active * graphics backend may be maintaining over the course of execution. */ void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer, std::size_t size); /** * Writes a range of bytes into a given process' address space at the specified * virtual address. * * @param dest_addr The destination virtual address to begin writing the data at. * @param src_buffer The data to write into the process' address space. * @param size The size of the data to write, in bytes. * * @post The address range [dest_addr, size) in the process' address space * contains the data that was within src_buffer. * * @post If an attempt is made to write into an unmapped region of memory, the writes * will be ignored and an error will be logged. * * @post If a write is performed into a region of memory that is considered cached * rasterizer memory, will cause the currently active rasterizer to be notified * and will mark that region as invalidated to caches that the active * graphics backend may be maintaining over the course of execution. */ void WriteBlock(VAddr dest_addr, const void* src_buffer, std::size_t size); /** * Zeros a range of bytes within the current process' address space at the specified * virtual address. * * @param process The process that will have data zeroed within its address space. * @param dest_addr The destination virtual address to zero the data from. * @param size The size of the range to zero out, in bytes. * * @post The range [dest_addr, size) within the process' address space contains the * value 0. */ void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size); /** * Copies data within a process' address space to another location within the * same address space. * * @param process The process that will have data copied within its address space. * @param dest_addr The destination virtual address to begin copying the data into. * @param src_addr The source virtual address to begin copying the data from. * @param size The size of the data to copy, in bytes. * * @post The range [dest_addr, size) within the process' address space contains the * same data within the range [src_addr, size). */ void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, std::size_t size); void CopyBlock(const Kernel::Process& dest_process, const Kernel::Process& src_process, VAddr dest_addr, VAddr src_addr, std::size_t size); /** * Marks each page within the specified address range as cached or uncached. * * @param vaddr The virtual address indicating the start of the address range. * @param size The size of the address range in bytes. * @param cached Whether or not any pages within the address range should be * marked as cached or uncached. */ void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached); /// For a rasterizer-accessible PAddr, gets a list of all possible VAddr std::vector PhysicalToVirtualAddressForRasterizer(PAddr addr); /// Gets a pointer to the memory region beginning at the specified physical address. u8* GetPhysicalPointer(PAddr address) const; /// Returns a reference to the memory region beginning at the specified physical address MemoryRef GetPhysicalRef(PAddr address) const; /// Determines if the given VAddr is valid for the specified process. bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr); /// Returns true if the address refers to a valid memory region bool IsValidPhysicalAddress(PAddr paddr) const; /// Gets offset in FCRAM from a pointer inside FCRAM range u32 GetFCRAMOffset(const u8* pointer) const; /// Gets pointer in FCRAM with given offset u8* GetFCRAMPointer(std::size_t offset); /// Gets pointer in FCRAM with given offset const u8* GetFCRAMPointer(std::size_t offset) const; /// Gets a serializable ref to FCRAM with the given offset MemoryRef GetFCRAMRef(std::size_t offset) const; /// Registers page table for rasterizer cache marking void RegisterPageTable(std::shared_ptr page_table); /// Unregisters page table for rasterizer cache marking void UnregisterPageTable(std::shared_ptr page_table); void SetDSP(AudioCore::DspInterface& dsp); void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode); private: template T Read(const VAddr vaddr); template void Write(const VAddr vaddr, const T data); template bool WriteExclusive(const VAddr vaddr, const T data, const T expected); /** * Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory. * This is used to access the memory where the page pointer is nullptr due to rasterizer cache. * Since the cache only happens on linear heap or VRAM, we know the exact physical address and * pointer of such virtual address */ MemoryRef GetPointerForRasterizerCache(VAddr addr) const; void MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory, PageType type); private: class Impl; std::unique_ptr impl; friend class boost::serialization::access; template void serialize(Archive& ar, const unsigned int file_version); public: template class BackingMemImpl; }; } // namespace Memory BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl) BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl)