// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/archives.h" #include "common/assert.h" #include "core/core.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/vm_manager.h" #include "core/hle/service/plgldr/plgldr.h" #include "core/memory.h" SERIALIZE_EXPORT_IMPL(Kernel::VirtualMemoryArea) namespace Kernel { static const char* GetMemoryStateName(MemoryState state) { static const char* names[] = { "Free", "Reserved", "IO", "Static", "Code", "Private", "Shared", "Continuous", "Aliased", "Alias", "AliasCode", "Locked", }; return names[(int)state]; } bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { ASSERT(base + size == next.base); if (permissions != next.permissions || meminfo_state != next.meminfo_state || type != next.type) { return false; } if (type == VMAType::BackingMemory && backing_memory.GetPtr() + size != next.backing_memory.GetPtr()) { return false; } return true; } template void VirtualMemoryArea::serialize(Archive& ar, const unsigned int) { ar& base; ar& size; ar& type; ar& permissions; ar& meminfo_state; ar& backing_memory; } SERIALIZE_IMPL(VirtualMemoryArea) VMManager::VMManager(Memory::MemorySystem& memory, Kernel::Process& proc) : page_table(std::make_shared()), memory(memory), process(proc) { Reset(); } VMManager::~VMManager() = default; void VMManager::Reset() { ASSERT(!is_locked); vma_map.clear(); // Initialize the map with a single free region covering the entire managed space. VirtualMemoryArea initial_vma; initial_vma.size = MAX_ADDRESS; vma_map.emplace(initial_vma.base, initial_vma); page_table->Clear(); UpdatePageTableForVMA(initial_vma); } VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { if (target >= MAX_ADDRESS) { return vma_map.end(); } else { return std::prev(vma_map.upper_bound(target)); } } ResultVal VMManager::MapBackingMemoryToBase(VAddr base, u32 region_size, MemoryRef memory, u32 size, MemoryState state) { ASSERT(!is_locked); // Find the first Free VMA. VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) { if (vma.second.type != VMAType::Free) return false; VAddr vma_end = vma.second.base + vma.second.size; return vma_end > base && vma_end >= base + size; }); VAddr target = std::max(base, vma_handle->second.base); // Do not try to allocate the block if there are no available addresses within the desired // region. if (vma_handle == vma_map.end() || target + size > base + region_size) { return Result(ErrorDescription::OutOfMemory, ErrorModule::Kernel, ErrorSummary::OutOfResource, ErrorLevel::Permanent); } auto result = MapBackingMemory(target, memory, size, state); if (result.Failed()) return result.Code(); return target; } ResultVal VMManager::MapBackingMemory(VAddr target, MemoryRef memory, u32 size, MemoryState state) { ASSERT(!is_locked); ASSERT(memory.GetPtr() != nullptr); // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::BackingMemory; final_vma.permissions = VMAPermission::ReadWrite; final_vma.meminfo_state = state; final_vma.backing_memory = memory; UpdatePageTableForVMA(final_vma); return MergeAdjacent(vma_handle); } Result VMManager::ChangeMemoryState(VAddr target, u32 size, MemoryState expected_state, VMAPermission expected_perms, MemoryState new_state, VMAPermission new_perms) { if (is_locked) { return ResultSuccess; } VAddr target_end = target + size; VMAIter begin_vma = StripIterConstness(FindVMA(target)); VMAIter i_end = vma_map.lower_bound(target_end); if (begin_vma == vma_map.end()) return ResultInvalidAddress; for (auto i = begin_vma; i != i_end; ++i) { auto& vma = i->second; if (vma.meminfo_state != expected_state) { return ResultInvalidAddressState; } u32 perms = static_cast(expected_perms); if ((static_cast(vma.permissions) & perms) != perms) { return ResultInvalidAddressState; } } CASCADE_RESULT(auto vma, CarveVMARange(target, size)); const VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma->second.permissions = new_perms; vma->second.meminfo_state = new_state; UpdatePageTableForVMA(vma->second); vma = std::next(MergeAdjacent(vma)); } return ResultSuccess; } VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) { ASSERT(!is_locked); VirtualMemoryArea& vma = vma_handle->second; vma.type = VMAType::Free; vma.permissions = VMAPermission::None; vma.meminfo_state = MemoryState::Free; vma.backing_memory = nullptr; UpdatePageTableForVMA(vma); return MergeAdjacent(vma_handle); } Result VMManager::UnmapRange(VAddr target, u32 size) { ASSERT(!is_locked); CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); const VAddr target_end = target + size; const VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(Unmap(vma)); } ASSERT(FindVMA(target)->second.size >= size); return ResultSuccess; } VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) { ASSERT(!is_locked); VMAIter iter = StripIterConstness(vma_handle); VirtualMemoryArea& vma = iter->second; vma.permissions = new_perms; UpdatePageTableForVMA(vma); return MergeAdjacent(iter); } Result VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) { ASSERT(!is_locked); CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); const VAddr target_end = target + size; const VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(StripIterConstness(Reprotect(vma, new_perms))); } return ResultSuccess; } void VMManager::LogLayout(Common::Log::Level log_level) const { for (const auto& p : vma_map) { const VirtualMemoryArea& vma = p.second; LOG_GENERIC(Common::Log::Class::Kernel, log_level, "{:08X} - {:08X} size: {:8X} {}{}{} {}", vma.base, vma.base + vma.size, vma.size, (u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-', (u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-', (u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-', GetMemoryStateName(vma.meminfo_state)); } } void VMManager::Unlock() { is_locked = false; } VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) { // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given // non-const access to its container. return vma_map.erase(iter, iter); // Erases an empty range of elements } ResultVal VMManager::CarveVMA(VAddr base, u32 size) { ASSERT_MSG((size & Memory::CITRA_PAGE_MASK) == 0, "non-page aligned size: {:#10X}", size); ASSERT_MSG((base & Memory::CITRA_PAGE_MASK) == 0, "non-page aligned base: {:#010X}", base); VMAIter vma_handle = StripIterConstness(FindVMA(base)); if (vma_handle == vma_map.end()) { // Target address is outside the range managed by the kernel return ResultInvalidAddress; } const VirtualMemoryArea& vma = vma_handle->second; if (vma.type != VMAType::Free) { // Region is already allocated return ResultInvalidAddressState; } const VAddr start_in_vma = base - vma.base; const VAddr end_in_vma = start_in_vma + size; if (end_in_vma > vma.size) { // Requested allocation doesn't fit inside VMA return ResultInvalidAddressState; } if (end_in_vma != vma.size) { // Split VMA at the end of the allocated region SplitVMA(vma_handle, end_in_vma); } if (start_in_vma != 0) { // Split VMA at the start of the allocated region vma_handle = SplitVMA(vma_handle, start_in_vma); } return vma_handle; } ResultVal VMManager::CarveVMARange(VAddr target, u32 size) { ASSERT_MSG((size & Memory::CITRA_PAGE_MASK) == 0, "non-page aligned size: {:#10X}", size); ASSERT_MSG((target & Memory::CITRA_PAGE_MASK) == 0, "non-page aligned base: {:#010X}", target); const VAddr target_end = target + size; ASSERT(target_end >= target); ASSERT(target_end <= MAX_ADDRESS); ASSERT(size > 0); VMAIter begin_vma = StripIterConstness(FindVMA(target)); const VMAIter i_end = vma_map.lower_bound(target_end); if (std::any_of(begin_vma, i_end, [](const auto& entry) { return entry.second.type == VMAType::Free; })) { return ResultInvalidAddressState; } if (target != begin_vma->second.base) { begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); } VMAIter end_vma = StripIterConstness(FindVMA(target_end)); if (end_vma != vma_map.end() && target_end != end_vma->second.base) { end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); } return begin_vma; } VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably // a bug. This restriction might be removed later. ASSERT(offset_in_vma < old_vma.size); ASSERT(offset_in_vma > 0); old_vma.size = offset_in_vma; new_vma.base += offset_in_vma; new_vma.size -= offset_in_vma; switch (new_vma.type) { case VMAType::Free: break; case VMAType::BackingMemory: new_vma.backing_memory += offset_in_vma; break; } ASSERT(old_vma.CanBeMergedWith(new_vma)); return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma); } VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { const VMAIter next_vma = std::next(iter); if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { iter->second.size += next_vma->second.size; vma_map.erase(next_vma); } if (iter != vma_map.begin()) { VMAIter prev_vma = std::prev(iter); if (prev_vma->second.CanBeMergedWith(iter->second)) { prev_vma->second.size += iter->second.size; vma_map.erase(iter); iter = prev_vma; } } return iter; } void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { switch (vma.type) { case VMAType::Free: memory.UnmapRegion(*page_table, vma.base, vma.size); break; case VMAType::BackingMemory: memory.MapMemoryRegion(*page_table, vma.base, vma.size, vma.backing_memory); break; } auto plgldr = Service::PLGLDR::GetService(Core::System::GetInstance()); if (plgldr) plgldr->OnMemoryChanged(process, Core::System::GetInstance().Kernel()); } ResultVal>> VMManager::GetBackingBlocksForRange(VAddr address, u32 size) { std::vector> backing_blocks; VAddr interval_target = address; while (interval_target != address + size) { auto vma = FindVMA(interval_target); if (vma->second.type != VMAType::BackingMemory) { LOG_ERROR(Kernel, "Trying to use already freed memory"); return ResultInvalidAddressState; } VAddr interval_end = std::min(address + size, vma->second.base + vma->second.size); u32 interval_size = interval_end - interval_target; auto backing_memory = vma->second.backing_memory + (interval_target - vma->second.base); backing_blocks.push_back({backing_memory, interval_size}); interval_target += interval_size; } return backing_blocks; } template void VMManager::serialize(Archive& ar, const unsigned int) { ar& vma_map; ar& page_table; if (Archive::is_loading::value) { is_locked = true; } } SERIALIZE_IMPL(VMManager) } // namespace Kernel