/* vfp/vfpdouble.c - ARM VFPv3 emulation unit - SoftFloat double instruction Copyright (C) 2003 Skyeye Develop Group for help please send mail to This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * This code is derived in part from : * - Android kernel * - John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include #include "common/logging/log.h" #include "core/arm/skyeye_common/vfp/asm_vfp.h" #include "core/arm/skyeye_common/vfp/vfp.h" #include "core/arm/skyeye_common/vfp/vfp_helper.h" static struct vfp_double vfp_double_default_qnan = { 2047, 0, VFP_DOUBLE_SIGNIFICAND_QNAN, }; static void vfp_double_dump(const char* str, struct vfp_double* d) { LOG_TRACE(Core_ARM11, "VFP: {}: sign={} exponent={} significand={:016x}", str, d->sign != 0, d->exponent, d->significand); } static void vfp_double_normalise_denormal(struct vfp_double* vd) { int bits = 31 - fls((u32)(vd->significand >> 32)); if (bits == 31) bits = 63 - fls((u32)vd->significand); vfp_double_dump("normalise_denormal: in", vd); if (bits) { vd->exponent -= bits - 1; vd->significand <<= bits; } vfp_double_dump("normalise_denormal: out", vd); } u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double* vd, u32 fpscr, u32 exceptions, const char* func) { u64 significand, incr; int exponent, shift, underflow; u32 rmode; vfp_double_dump("pack: in", vd); /* * Infinities and NaNs are a special case. */ if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vd->significand == 0) { vd->exponent = 0; goto pack; } exponent = vd->exponent; significand = vd->significand; shift = 32 - fls((u32)(significand >> 32)); if (shift == 32) shift = 64 - fls((u32)significand); if (shift) { exponent -= shift; significand <<= shift; } #if 1 vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: normalised", vd); #endif /* * Tiny number? */ underflow = exponent < 0; if (underflow) { significand = vfp_shiftright64jamming(significand, -exponent); exponent = 0; #if 1 vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: tiny number", vd); #endif if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) underflow = 0; int type = vfp_double_type(vd); if ((type & VFP_DENORMAL) && (fpscr & FPSCR_FLUSH_TO_ZERO)) { // Flush denormal to positive 0 significand = 0; vd->sign = 0; vd->significand = significand; underflow = 0; exceptions |= FPSCR_UFC; } } /* * Select rounding increment. */ incr = 0; rmode = fpscr & FPSCR_RMODE_MASK; if (rmode == FPSCR_ROUND_NEAREST) { incr = 1ULL << VFP_DOUBLE_LOW_BITS; if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; LOG_TRACE(Core_ARM11, "VFP: rounding increment = 0x{:08x}", incr); /* * Is our rounding going to overflow? */ if ((significand + incr) < significand) { exponent += 1; significand = (significand >> 1) | (significand & 1); incr >>= 1; #if 1 vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: overflow", vd); #endif } /* * If any of the low bits (which will be shifted out of the * number) are non-zero, the result is inexact. */ if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) exceptions |= FPSCR_IXC; /* * Do our rounding. */ significand += incr; /* * Infinity? */ if (exponent >= 2046) { exceptions |= FPSCR_OFC | FPSCR_IXC; if (incr == 0) { vd->exponent = 2045; vd->significand = 0x7fffffffffffffffULL; } else { vd->exponent = 2047; /* infinity */ vd->significand = 0; } } else { if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) exponent = 0; if (exponent || significand > 0x8000000000000000ULL) underflow = 0; if (underflow) exceptions |= FPSCR_UFC; vd->exponent = exponent; vd->significand = significand >> 1; } pack: vfp_double_dump("pack: final", vd); { s64 d = vfp_double_pack(vd); LOG_TRACE(Core_ARM11, "VFP: {}: d(d{})={:016x} exceptions={:08x}", func, dd, d, exceptions); vfp_put_double(state, d, dd); } return exceptions; } /* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN. 'm' may be a number, NaN or infinity. */ static u32 vfp_propagate_nan(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, u32 fpscr) { struct vfp_double* nan; int tn, tm = 0; tn = vfp_double_type(vdn); if (vdm) tm = vfp_double_type(vdm); if (fpscr & FPSCR_DEFAULT_NAN) /* * Default NaN mode - always returns a quiet NaN */ nan = &vfp_double_default_qnan; else { /* * Contemporary mode - select the first signalling * NAN, or if neither are signalling, the first * quiet NAN. */ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) nan = vdn; else nan = vdm; /* * Make the NaN quiet. */ nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; } *vdd = *nan; /* * If one was a signalling NAN, raise invalid operation. */ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; } /* * Extended operations */ static u32 vfp_double_fabs(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vfp_put_double(state, vfp_double_packed_abs(vfp_get_double(state, dm)), dd); return 0; } static u32 vfp_double_fcpy(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vfp_put_double(state, vfp_get_double(state, dm), dd); return 0; } static u32 vfp_double_fneg(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vfp_put_double(state, vfp_double_packed_negate(vfp_get_double(state, dm)), dd); return 0; } static u32 vfp_double_fsqrt(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vfp_double vdm, vdd, *vdp; int ret, tm; u32 exceptions = 0; exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); tm = vfp_double_type(&vdm); if (tm & (VFP_NAN | VFP_INFINITY)) { vdp = &vdd; if (tm & VFP_NAN) ret = vfp_propagate_nan(vdp, &vdm, nullptr, fpscr); else if (vdm.sign == 0) { sqrt_copy: vdp = &vdm; ret = 0; } else { sqrt_invalid: vdp = &vfp_double_default_qnan; ret = FPSCR_IOC; } vfp_put_double(state, vfp_double_pack(vdp), dd); return ret; } /* * sqrt(+/- 0) == +/- 0 */ if (tm & VFP_ZERO) goto sqrt_copy; /* * Normalise a denormalised number */ if (tm & VFP_DENORMAL) vfp_double_normalise_denormal(&vdm); /* * sqrt(<0) = invalid */ if (vdm.sign) goto sqrt_invalid; vfp_double_dump("sqrt", &vdm); /* * Estimate the square root. */ vdd.sign = 0; vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; vfp_double_dump("sqrt estimate1", &vdd); vdm.significand >>= 1 + (vdm.exponent & 1); vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); vfp_double_dump("sqrt estimate2", &vdd); /* * And now adjust. */ if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { if (vdd.significand < 2) { vdd.significand = ~0ULL; } else { u64 termh, terml, remh, reml; vdm.significand <<= 2; mul64to128(&termh, &terml, vdd.significand, vdd.significand); sub128(&remh, &reml, vdm.significand, 0, termh, terml); while ((s64)remh < 0) { vdd.significand -= 1; shift64left(&termh, &terml, vdd.significand); terml |= 1; add128(&remh, &reml, remh, reml, termh, terml); } vdd.significand |= (remh | reml) != 0; } } vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); exceptions |= vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fsqrt"); return exceptions; } /* * Equal := ZC * Less than := N * Greater than := C * Unordered := CV */ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, s64 m, u32 fpscr) { s64 d; u32 ret = 0; LOG_TRACE(Core_ARM11, "In {}, state=0x{}, fpscr=0x{:x}", __FUNCTION__, fmt::ptr(state), fpscr); if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } d = vfp_get_double(state, dd); if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (ret == 0) { // printf("In %s, d=%lld, m =%lld\n ", __FUNCTION__, d, m); if (d == m || vfp_double_packed_abs(d | m) == 0) { /* * equal */ ret |= FPSCR_ZFLAG | FPSCR_CFLAG; // printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); } else if (vfp_double_packed_sign(d ^ m)) { /* * different signs */ if (vfp_double_packed_sign(d)) /* * d is negative, so d < m */ ret |= FPSCR_NFLAG; else /* * d is positive, so d > m */ ret |= FPSCR_CFLAG; } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ ret |= FPSCR_NFLAG; } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ ret |= FPSCR_CFLAG; } } LOG_TRACE(Core_ARM11, "In {}, state=0x{}, ret=0x{:x}", __FUNCTION__, fmt::ptr(state), ret); return ret; } static u32 vfp_double_fcmp(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_compare(state, dd, 0, vfp_get_double(state, dm), fpscr); } static u32 vfp_double_fcmpe(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_compare(state, dd, 1, vfp_get_double(state, dm), fpscr); } static u32 vfp_double_fcmpz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_compare(state, dd, 0, 0, fpscr); } static u32 vfp_double_fcmpez(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_compare(state, dd, 1, 0, fpscr); } static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; struct vfp_single vsd; int tm; u32 exceptions = 0; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); tm = vfp_double_type(&vdm); /* * If we have a signalling NaN, signal invalid operation. */ if (tm == VFP_SNAN) exceptions = FPSCR_IOC; if (tm & VFP_DENORMAL) vfp_double_normalise_denormal(&vdm); vsd.sign = vdm.sign; vsd.significand = vfp_hi64to32jamming(vdm.significand); /* * If we have an infinity or a NaN, the exponent must be 255 */ if (tm & (VFP_INFINITY | VFP_NAN)) { vsd.exponent = 255; if (tm == VFP_QNAN) vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; goto pack_nan; } else if (tm & VFP_ZERO) vsd.exponent = 0; else vsd.exponent = vdm.exponent - (1023 - 127); return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts"); pack_nan: vfp_put_float(state, vfp_single_pack(&vsd), sd); return exceptions; } static u32 vfp_double_fuito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 m = vfp_get_float(state, dm); LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vdm.sign = 0; vdm.exponent = 1023 + 63 - 1; vdm.significand = (u64)m; return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fuito"); } static u32 vfp_double_fsito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 m = vfp_get_float(state, dm); LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vdm.sign = (m & 0x80000000) >> 16; vdm.exponent = 1023 + 63 - 1; vdm.significand = vdm.sign ? (~m + 1) : m; return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fsito"); } static u32 vfp_double_ftoui(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); /* * Do we have a denormalised number? */ tm = vfp_double_type(&vdm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) vdm.sign = 1; if (vdm.exponent >= 1023 + 32) { d = vdm.sign ? 0 : 0xffffffff; exceptions = FPSCR_IOC; } else if (vdm.exponent >= 1023) { int shift = 1023 + 63 - vdm.exponent; u64 rem, incr = 0; /* * 2^0 <= m < 2^32-2^8 */ d = (u32)((vdm.significand << 1) >> shift); rem = vdm.significand << (65 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x8000000000000000ULL; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { incr = ~0ULL; } if ((rem + incr) < rem) { if (d < 0xffffffff) d += 1; else exceptions |= FPSCR_IOC; } if (d && vdm.sign) { d = 0; exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; } else { d = 0; if (vdm.exponent | vdm.significand) { if (rmode == FPSCR_ROUND_NEAREST) { if (vdm.exponent >= 1022) { d = vdm.sign ? 0 : 1; exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC; } else { exceptions |= FPSCR_IXC; } } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) { d = 1; exceptions |= FPSCR_IXC; } else if (rmode == FPSCR_ROUND_MINUSINF) { exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC; } else { exceptions |= FPSCR_IXC; } } } LOG_TRACE(Core_ARM11, "VFP: ftoui: d(s{})={:08x} exceptions={:08x}", sd, d, exceptions); vfp_put_float(state, d, sd); return exceptions; } static u32 vfp_double_ftouiz(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_ftoui(state, sd, unused, dm, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); } static u32 vfp_double_ftosi(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); vfp_double_dump("VDM", &vdm); /* * Do we have denormalised number? */ tm = vfp_double_type(&vdm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) { d = 0; exceptions |= FPSCR_IOC; } else if (vdm.exponent >= 1023 + 31) { d = 0x7fffffff; if (vdm.sign) d = ~d; exceptions |= FPSCR_IOC; } else if (vdm.exponent >= 1023) { int shift = 1023 + 63 - vdm.exponent; /* 58 */ u64 rem, incr = 0; d = (u32)((vdm.significand << 1) >> shift); rem = vdm.significand << (65 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x8000000000000000ULL; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { incr = ~0ULL; } if ((rem + incr) < rem && d < 0xffffffff) d += 1; if (d > (0x7fffffffU + (vdm.sign != 0))) { d = (0x7fffffffU + (vdm.sign != 0)); exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; if (vdm.sign) d = (~d + 1); } else { d = 0; if (vdm.exponent | vdm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_NEAREST) { if (vdm.exponent >= 1022) { d = vdm.sign ? 0xffffffff : 1; } else { d = 0; } } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) { d = 1; } else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { d = 0xffffffff; } } } LOG_TRACE(Core_ARM11, "VFP: ftosi: d(s{})={:08x} exceptions={:08x}", sd, d, exceptions); vfp_put_float(state, (s32)d, sd); return exceptions; } static u32 vfp_double_ftosiz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_ftosi(state, dd, unused, dm, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); } static struct op fops_ext[] = { {vfp_double_fcpy, 0}, // 0x00000000 - FEXT_FCPY {vfp_double_fabs, 0}, // 0x00000001 - FEXT_FABS {vfp_double_fneg, 0}, // 0x00000002 - FEXT_FNEG {vfp_double_fsqrt, 0}, // 0x00000003 - FEXT_FSQRT {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {vfp_double_fcmp, OP_SCALAR}, // 0x00000008 - FEXT_FCMP {vfp_double_fcmpe, OP_SCALAR}, // 0x00000009 - FEXT_FCMPE {vfp_double_fcmpz, OP_SCALAR}, // 0x0000000A - FEXT_FCMPZ {vfp_double_fcmpez, OP_SCALAR}, // 0x0000000B - FEXT_FCMPEZ {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {vfp_double_fcvts, OP_SCALAR | OP_DD}, // 0x0000000F - FEXT_FCVT {vfp_double_fuito, OP_SCALAR | OP_SM}, // 0x00000010 - FEXT_FUITO {vfp_double_fsito, OP_SCALAR | OP_SM}, // 0x00000011 - FEXT_FSITO {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {nullptr, 0}, {vfp_double_ftoui, OP_SCALAR | OP_SD}, // 0x00000018 - FEXT_FTOUI {vfp_double_ftouiz, OP_SCALAR | OP_SD}, // 0x00000019 - FEXT_FTOUIZ {vfp_double_ftosi, OP_SCALAR | OP_SD}, // 0x0000001A - FEXT_FTOSI {vfp_double_ftosiz, OP_SCALAR | OP_SD}, // 0x0000001B - FEXT_FTOSIZ }; static u32 vfp_double_fadd_nonnumber(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, u32 fpscr) { struct vfp_double* vdp; u32 exceptions = 0; int tn, tm; tn = vfp_double_type(vdn); tm = vfp_double_type(vdm); if (tn & tm & VFP_INFINITY) { /* * Two infinities. Are they different signs? */ if (vdn->sign ^ vdm->sign) { /* * different signs -> invalid */ exceptions = FPSCR_IOC; vdp = &vfp_double_default_qnan; } else { /* * same signs -> valid */ vdp = vdn; } } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { /* * One infinity and one number -> infinity */ vdp = vdn; } else { /* * 'n' is a NaN of some type */ return vfp_propagate_nan(vdd, vdn, vdm, fpscr); } *vdd = *vdp; return exceptions; } u32 vfp_double_add(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, u32 fpscr) { u32 exp_diff; u64 m_sig; if (vdn->significand & (1ULL << 63) || vdm->significand & (1ULL << 63)) { LOG_INFO(Core_ARM11, "VFP: bad FP values in {}", __func__); vfp_double_dump("VDN", vdn); vfp_double_dump("VDM", vdm); } /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vdn->exponent < vdm->exponent) { std::swap(vdm, vdn); } /* * Is 'n' an infinity or a NaN? Note that 'm' may be a number, * infinity or a NaN here. */ if (vdn->exponent == 2047) return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); /* * We have two proper numbers, where 'vdn' is the larger magnitude. * * Copy 'n' to 'd' before doing the arithmetic. */ *vdd = *vdn; /* * Align 'm' with the result. */ exp_diff = vdn->exponent - vdm->exponent; m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); /* * If the signs are different, we are really subtracting. */ if (vdn->sign ^ vdm->sign) { m_sig = vdn->significand - m_sig; if ((s64)m_sig < 0) { vdd->sign = vfp_sign_negate(vdd->sign); m_sig = (~m_sig + 1); } else if (m_sig == 0) { vdd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0; } } else { m_sig += vdn->significand; } vdd->significand = m_sig; return 0; } u32 vfp_double_multiply(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, u32 fpscr) { vfp_double_dump("VDN", vdn); vfp_double_dump("VDM", vdm); /* * Ensure that 'n' is the largest magnitude number. Note that * if 'n' and 'm' have equal exponents, we do not swap them. * This ensures that NaN propagation works correctly. */ if (vdn->exponent < vdm->exponent) { std::swap(vdm, vdn); LOG_TRACE(Core_ARM11, "VFP: swapping M <-> N"); } vdd->sign = vdn->sign ^ vdm->sign; /* * If 'n' is an infinity or NaN, handle it. 'm' may be anything. */ if (vdn->exponent == 2047) { if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) return vfp_propagate_nan(vdd, vdn, vdm, fpscr); if ((vdm->exponent | vdm->significand) == 0) { *vdd = vfp_double_default_qnan; return FPSCR_IOC; } vdd->exponent = vdn->exponent; vdd->significand = 0; return 0; } /* * If 'm' is zero, the result is always zero. In this case, * 'n' may be zero or a number, but it doesn't matter which. */ if ((vdm->exponent | vdm->significand) == 0) { vdd->exponent = 0; vdd->significand = 0; return 0; } /* * We add 2 to the destination exponent for the same reason * as the addition case - though this time we have +1 from * each input operand. */ vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); vfp_double_dump("VDD", vdd); return 0; } #define NEG_MULTIPLY (1 << 0) #define NEG_SUBTRACT (1 << 1) static u32 vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 fpscr, u32 negate, const char* func) { struct vfp_double vdd, vdp, vdn, vdm; u32 exceptions = 0; exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); if (vdn.exponent == 0 && vdn.significand) vfp_double_normalise_denormal(&vdn); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); if (vdm.exponent == 0 && vdm.significand) vfp_double_normalise_denormal(&vdm); exceptions |= vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); if (negate & NEG_MULTIPLY) vdp.sign = vfp_sign_negate(vdp.sign); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dd), fpscr); if (vdn.exponent == 0 && vdn.significand != 0) vfp_double_normalise_denormal(&vdn); if (negate & NEG_SUBTRACT) vdn.sign = vfp_sign_negate(vdn.sign); exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, func); } /* * Standard operations */ /* * sd = sd + (sn * sm) */ static u32 vfp_double_fmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, 0, "fmac"); } /* * sd = sd - (sn * sm) */ static u32 vfp_double_fnmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); } /* * sd = -sd + (sn * sm) */ static u32 vfp_double_fmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); } /* * sd = -sd - (sn * sm) */ static u32 vfp_double_fnmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); } /* * sd = sn * sm */ static u32 vfp_double_fmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { struct vfp_double vdd, vdn, vdm; u32 exceptions = 0; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); if (vdn.exponent == 0 && vdn.significand) vfp_double_normalise_denormal(&vdn); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); if (vdm.exponent == 0 && vdm.significand) vfp_double_normalise_denormal(&vdm); exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fmul"); } /* * sd = -(sn * sm) */ static u32 vfp_double_fnmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { struct vfp_double vdd, vdn, vdm; u32 exceptions = 0; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); if (vdn.exponent == 0 && vdn.significand) vfp_double_normalise_denormal(&vdn); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); if (vdm.exponent == 0 && vdm.significand) vfp_double_normalise_denormal(&vdm); exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); vdd.sign = vfp_sign_negate(vdd.sign); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fnmul"); } /* * sd = sn + sm */ static u32 vfp_double_fadd(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { struct vfp_double vdd, vdn, vdm; u32 exceptions = 0; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); if (vdn.exponent == 0 && vdn.significand) vfp_double_normalise_denormal(&vdn); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); if (vdm.exponent == 0 && vdm.significand) vfp_double_normalise_denormal(&vdm); exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fadd"); } /* * sd = sn - sm */ static u32 vfp_double_fsub(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { struct vfp_double vdd, vdn, vdm; u32 exceptions = 0; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); if (vdn.exponent == 0 && vdn.significand) vfp_double_normalise_denormal(&vdn); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); if (vdm.exponent == 0 && vdm.significand) vfp_double_normalise_denormal(&vdm); /* * Subtraction is like addition, but with a negated operand. */ vdm.sign = vfp_sign_negate(vdm.sign); exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr); return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fsub"); } /* * sd = sn / sm */ static u32 vfp_double_fdiv(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { struct vfp_double vdd, vdn, vdm; u32 exceptions = 0; int tm, tn; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); vdd.sign = vdn.sign ^ vdm.sign; tn = vfp_double_type(&vdn); tm = vfp_double_type(&vdm); /* * Is n a NAN? */ if (tn & VFP_NAN) goto vdn_nan; /* * Is m a NAN? */ if (tm & VFP_NAN) goto vdm_nan; /* * If n and m are infinity, the result is invalid * If n and m are zero, the result is invalid */ if (tm & tn & (VFP_INFINITY | VFP_ZERO)) goto invalid; /* * If n is infinity, the result is infinity */ if (tn & VFP_INFINITY) goto infinity; /* * If m is zero, raise div0 exceptions */ if (tm & VFP_ZERO) goto divzero; /* * If m is infinity, or n is zero, the result is zero */ if (tm & VFP_INFINITY || tn & VFP_ZERO) goto zero; if (tn & VFP_DENORMAL) vfp_double_normalise_denormal(&vdn); if (tm & VFP_DENORMAL) vfp_double_normalise_denormal(&vdm); /* * Ok, we have two numbers, we can perform division. */ vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; vdm.significand <<= 1; if (vdm.significand <= (2 * vdn.significand)) { vdn.significand >>= 1; vdd.exponent++; } vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); if ((vdd.significand & 0x1ff) <= 2) { u64 termh, terml, remh, reml; mul64to128(&termh, &terml, vdm.significand, vdd.significand); sub128(&remh, &reml, vdn.significand, 0, termh, terml); while ((s64)remh < 0) { vdd.significand -= 1; add128(&remh, &reml, remh, reml, 0, vdm.significand); } vdd.significand |= (reml != 0); } return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fdiv"); vdn_nan: exceptions |= vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); pack: vfp_put_double(state, vfp_double_pack(&vdd), dd); return exceptions; vdm_nan: exceptions |= vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); goto pack; zero: vdd.exponent = 0; vdd.significand = 0; goto pack; divzero: exceptions |= FPSCR_DZC; infinity: vdd.exponent = 2047; vdd.significand = 0; goto pack; invalid: vfp_put_double(state, vfp_double_pack(&vfp_double_default_qnan), dd); return FPSCR_IOC; } static struct op fops[] = { {vfp_double_fmac, 0}, {vfp_double_fmsc, 0}, {vfp_double_fmul, 0}, {vfp_double_fadd, 0}, {vfp_double_fnmac, 0}, {vfp_double_fnmsc, 0}, {vfp_double_fnmul, 0}, {vfp_double_fsub, 0}, {vfp_double_fdiv, 0}, }; #define FREG_BANK(x) ((x)&0x0c) #define FREG_IDX(x) ((x)&3) u32 vfp_double_cpdo(ARMul_State* state, u32 inst, u32 fpscr) { u32 op = inst & FOP_MASK; u32 exceptions = 0; unsigned int dest; unsigned int dn = vfp_get_dn(inst); unsigned int dm; unsigned int vecitr, veclen, vecstride; struct op* fop; LOG_TRACE(Core_ARM11, "In {}", __FUNCTION__); vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)); fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; /* * fcvtds takes an sN register number as destination, not dN. * It also always operates on scalars. */ if (fop->flags & OP_SD) dest = vfp_get_sd(inst); else dest = vfp_get_dd(inst); /* * f[us]ito takes a sN operand, not a dN operand. */ if (fop->flags & OP_SM) dm = vfp_get_sm(inst); else dm = vfp_get_dm(inst); /* * If destination bank is zero, vector length is always '1'. * ARM DDI0100F C5.1.3, C5.3.2. */ if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0)) veclen = 0; else veclen = fpscr & FPSCR_LENGTH_MASK; LOG_TRACE(Core_ARM11, "VFP: vecstride={} veclen={}", vecstride, (veclen >> FPSCR_LENGTH_BIT) + 1); if (!fop->fn) { LOG_TRACE(Core_ARM11, "VFP: could not find double op {}", FEXT_TO_IDX(inst)); goto invalid; } for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { u32 except; [[maybe_unused]] char type; type = (fop->flags & OP_SD) ? 's' : 'd'; if (op == FOP_EXT) LOG_TRACE(Core_ARM11, "VFP: itr{} ({}{}) = op[{}] (d{})", vecitr >> FPSCR_LENGTH_BIT, type, dest, dn, dm); else LOG_TRACE(Core_ARM11, "VFP: itr{} ({}{}) = (d{}) op[{}] (d{})", vecitr >> FPSCR_LENGTH_BIT, type, dest, dn, FOP_TO_IDX(op), dm); except = fop->fn(state, dest, dn, dm, fpscr); LOG_TRACE(Core_ARM11, "VFP: itr{}: exceptions={:08x}", vecitr >> FPSCR_LENGTH_BIT, except); exceptions |= except & ~VFP_NAN_FLAG; /* * CHECK: It appears to be undefined whether we stop when * we encounter an exception. We continue. */ dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3); dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3); if (FREG_BANK(dm) != 0) dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3); } return exceptions; invalid: return ~0; }