/* * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * Copyright (c) 2020 Andrey Semashev */ /*! * \file find_address_sse2.cpp * * This file contains SSE2 implementation of the \c find_address algorithm */ #include #include #if BOOST_ARCH_X86 && defined(BOOST_ATOMIC_DETAIL_SIZEOF_POINTER) && (BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 || BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 4) #include #include #include #include #include #include "find_address.hpp" #include "x86_vector_tools.hpp" #include "bit_operation_tools.hpp" #include namespace boost { namespace atomics { namespace detail { #if BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 namespace { BOOST_FORCEINLINE __m128i mm_pand_si128(__m128i mm1, __m128i mm2) { // As of 2020, gcc, clang and icc prefer to generate andps instead of pand if the surrounding // instructions pertain to FP domain, even if we use the _mm_and_si128 intrinsic. In our // algorithm implementation, the FP instruction happen to be shufps, which is not actually // restricted to FP domain (it is actually implemented in a separate MMX EU in Pentium 4 or // a shuffle EU in INT domain in Core 2; on AMD K8/K10 all SSE instructions are implemented in // FADD, FMUL and FMISC EUs regardless of INT/FP data types, and shufps is implemented in FADD/FMUL). // In other words, there should be no domain bypass penalty between shufps and pand. // // This would usually not pose a problem since andps and pand have the same latency and throughput // on most architectures of that age (before SSE4.1). However, it is possible that a newer architecture // runs the SSE2 code path (e.g. because some weird compiler doesn't support SSE4.1 or because // a hypervisor blocks SSE4.1 detection), and there pand may have a better throughput. For example, // Sandy Bridge can execute 3 pand instructions per cycle, but only one andps. For this reason // we prefer to generate pand and not andps. #if defined(__GNUC__) #if defined(__AVX__) // Generate VEX-coded variant if the code is compiled for AVX and later. __asm__("vpand %1, %0, %0\n\t" : "+x" (mm1) : "x" (mm2)); #else __asm__("pand %1, %0\n\t" : "+x" (mm1) : "x" (mm2)); #endif #else mm1 = _mm_and_si128(mm1, mm2); #endif return mm1; } } // namespace #endif // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 //! SSE2 implementation of the \c find_address algorithm std::size_t find_address_sse2(const volatile void* addr, const volatile void* const* addrs, std::size_t size) { #if BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 if (size < 12u) return find_address_generic(addr, addrs, size); const __m128i mm_addr = mm_set1_epiptr((uintptr_t)addr); std::size_t pos = 0u; const std::size_t n = (size + 1u) & ~static_cast< std::size_t >(1u); for (std::size_t m = n & ~static_cast< std::size_t >(15u); pos < m; pos += 16u) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); __m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u)); __m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u)); __m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 6u)); __m128i mm5 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 8u)); __m128i mm6 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 10u)); __m128i mm7 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 12u)); __m128i mm8 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 14u)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); mm2 = _mm_cmpeq_epi32(mm2, mm_addr); mm3 = _mm_cmpeq_epi32(mm3, mm_addr); mm4 = _mm_cmpeq_epi32(mm4, mm_addr); mm5 = _mm_cmpeq_epi32(mm5, mm_addr); mm6 = _mm_cmpeq_epi32(mm6, mm_addr); mm7 = _mm_cmpeq_epi32(mm7, mm_addr); mm8 = _mm_cmpeq_epi32(mm8, mm_addr); __m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1))); __m128i mm_mask2_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask2_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(3, 1, 3, 1))); __m128i mm_mask3_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm5), _mm_castsi128_ps(mm6), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask3_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm5), _mm_castsi128_ps(mm6), _MM_SHUFFLE(3, 1, 3, 1))); __m128i mm_mask4_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm7), _mm_castsi128_ps(mm8), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask4_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm7), _mm_castsi128_ps(mm8), _MM_SHUFFLE(3, 1, 3, 1))); mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi); mm_mask2_lo = mm_pand_si128(mm_mask2_lo, mm_mask2_hi); mm_mask3_lo = mm_pand_si128(mm_mask3_lo, mm_mask3_hi); mm_mask4_lo = mm_pand_si128(mm_mask4_lo, mm_mask4_hi); mm_mask1_lo = _mm_packs_epi32(mm_mask1_lo, mm_mask2_lo); mm_mask3_lo = _mm_packs_epi32(mm_mask3_lo, mm_mask4_lo); mm_mask1_lo = _mm_packs_epi16(mm_mask1_lo, mm_mask3_lo); uint32_t mask = _mm_movemask_epi8(mm_mask1_lo); if (mask) { pos += atomics::detail::count_trailing_zeros(mask); goto done; } } if ((n - pos) >= 8u) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); __m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u)); __m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u)); __m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 6u)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); mm2 = _mm_cmpeq_epi32(mm2, mm_addr); mm3 = _mm_cmpeq_epi32(mm3, mm_addr); mm4 = _mm_cmpeq_epi32(mm4, mm_addr); __m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1))); __m128i mm_mask2_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask2_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm3), _mm_castsi128_ps(mm4), _MM_SHUFFLE(3, 1, 3, 1))); mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi); mm_mask2_lo = mm_pand_si128(mm_mask2_lo, mm_mask2_hi); mm_mask1_lo = _mm_packs_epi32(mm_mask1_lo, mm_mask2_lo); uint32_t mask = _mm_movemask_epi8(mm_mask1_lo); if (mask) { pos += atomics::detail::count_trailing_zeros(mask) / 2u; goto done; } pos += 8u; } if ((n - pos) >= 4u) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); __m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 2u)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); mm2 = _mm_cmpeq_epi32(mm2, mm_addr); __m128i mm_mask1_lo = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(2, 0, 2, 0))); __m128i mm_mask1_hi = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(mm1), _mm_castsi128_ps(mm2), _MM_SHUFFLE(3, 1, 3, 1))); mm_mask1_lo = mm_pand_si128(mm_mask1_lo, mm_mask1_hi); uint32_t mask = _mm_movemask_ps(_mm_castsi128_ps(mm_mask1_lo)); if (mask) { pos += atomics::detail::count_trailing_zeros(mask); goto done; } pos += 4u; } if (pos < n) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); __m128i mm_mask = _mm_shuffle_epi32(mm1, _MM_SHUFFLE(2, 3, 0, 1)); mm_mask = mm_pand_si128(mm_mask, mm1); uint32_t mask = _mm_movemask_pd(_mm_castsi128_pd(mm_mask)); if (mask) { pos += atomics::detail::count_trailing_zeros(mask); goto done; } pos += 2u; } done: return pos; #else // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 if (size < 10u) return find_address_generic(addr, addrs, size); const __m128i mm_addr = _mm_set1_epi32((uintptr_t)addr); std::size_t pos = 0u; const std::size_t n = (size + 3u) & ~static_cast< std::size_t >(3u); for (std::size_t m = n & ~static_cast< std::size_t >(15u); pos < m; pos += 16u) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); __m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u)); __m128i mm3 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 8u)); __m128i mm4 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 12u)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); mm2 = _mm_cmpeq_epi32(mm2, mm_addr); mm3 = _mm_cmpeq_epi32(mm3, mm_addr); mm4 = _mm_cmpeq_epi32(mm4, mm_addr); mm1 = _mm_packs_epi32(mm1, mm2); mm3 = _mm_packs_epi32(mm3, mm4); mm1 = _mm_packs_epi16(mm1, mm3); uint32_t mask = _mm_movemask_epi8(mm1); if (mask) { pos += atomics::detail::count_trailing_zeros(mask); goto done; } } if ((n - pos) >= 8u) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); __m128i mm2 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos + 4u)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); mm2 = _mm_cmpeq_epi32(mm2, mm_addr); mm1 = _mm_packs_epi32(mm1, mm2); uint32_t mask = _mm_movemask_epi8(mm1); if (mask) { pos += atomics::detail::count_trailing_zeros(mask) / 2u; goto done; } pos += 8u; } if (pos < n) { __m128i mm1 = _mm_load_si128(reinterpret_cast< const __m128i* >(addrs + pos)); mm1 = _mm_cmpeq_epi32(mm1, mm_addr); uint32_t mask = _mm_movemask_ps(_mm_castsi128_ps(mm1)); if (mask) { pos += atomics::detail::count_trailing_zeros(mask); goto done; } pos += 4u; } done: return pos; #endif // BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 } } // namespace detail } // namespace atomics } // namespace boost #include #endif // BOOST_ARCH_X86 && defined(BOOST_ATOMIC_DETAIL_SIZEOF_POINTER) && (BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 8 || BOOST_ATOMIC_DETAIL_SIZEOF_POINTER == 4)